1. Объем прямоугольного параллелепипеда равен произведению его сторон V = a * b * c, если необходимо найти одну из сторон, необходимо объем разделить на произведение двух известных сторон.
c = V / (a * b) = 64 / (4 * 2) = 64 / 8 = 8 см.
2. Уменьшим длину найденной стороны на 3 см.
с = 8 - 3 = 5 см.
3. Найдем новый объем прямоугольного параллелепипеда.
V = 4 * 2 * 5 = 8 * 5 = 40 cм в кубе.
ответ: Объем параллелепипеда после уменьшения стороны на 3 см, будет равен 40 см3.
(не очень уверена)(вроде всё правильно)
Известно, a4 = 12 и a6 = 18
В арифметической прогрессии каждый последующий член больше предыдущего на величину шага (d):
a5 = a4 + d, или a5 = 12 + d
a6 = a5 + d, или 18 = a5 + d
Значение a5 из первого уравнения подставляем во второе уравнение:
18 = (12 + d) + d = 12 + 2d, откуда находим 6 = 2d; d = 3
Подставляем полученное значение шага в первое уравнение:
a5 = 12 + d = 12 +3 = 15
ответ: 15
Примечание. Всё можно было найти гораздо проще. Каждый член арифметической прогрессии равен среднему арифметическому его соседних членов (за исключением первого члена, у которого только один сосед). Используя данное свойство, легко находим пятый член прогрессии, т.к. известны его соседи слева и справа:
a5 = (a4 + a6)/2 = (12 + 18)/2 = 30/2 = 15