из данной точки проведены к данной плоскости две равные наклонные, угол между наклонными равен 60° а угол между проекциями прямой, докажите что каждый из этих наклонных образует плоскость угол 45°
Арабские цифры изобрели совсем не арабы. Они просто высоко оценили преимущества их, по сравнению с римской и греческой системами, которые считались самыми совершенными в мире на тот момент. Но ведь гораздо удобнее отображать бесконечно большие числа лишь десятью знаками. Главным достоинством арабских цифр является не удобство написания, а сама система, так как она является позиционной. То есть положение цифры влияет на значение числа. Так люди определяют единицы, десятки, сотни, тысячи и так далее. ... А девятка, нетрудно догадаться, из девяти. Вот почему цифры называются арабскими: ими было придумано оригинальное начертание. Гипотезы. Сегодня нет однозначного мнения насчет формирования написания арабских цифр
Решение неравенств. Это задание отличается слегка необычной формулировкой. Решить неравенство, значит найти все корни, удовлетворяющие условию неравенства, либо установить, что их нет. В данном задании просят найти один конкретный корень неравенства - наибольший из всех. Для Начала найдем все корни: 50006-4859=45147 45147:3=15049 15049+351=15400 Y<15400 Теперь осталось выбрать наибольший из найденных корней. А вот тут мы видим определенную проблему. Либо автор хотел нас как-то подловить, либо задача здесь записана некорректно. Дело в том, что Корней бесконечно много на любом участке от минус бесконечности до 15400 и мы не сможем никогда найти набольший корень. Например если мы возьмем корень 15399 (наибольший НАТУРАЛЬНЫЙ корень), то можно сказать, что корень 15399,5 будет еще больше. А если возьмем, например, 15399,9999999999 То можно всегда дописать еще одну 9ку после запятой и сказать что новый корень будет опять больше: 15399,99999999999. И так далее. Значит либо задача записана некорректно и вопрос на самом деле требует найти наибольший НАТУРАЛЬНЫЙ корень, тогда ответ будет 15399. Либо Неравенство НЕстрогое и выглядит как Y<=15400 (меньше либо равно), тогда ответом будет как раз 15400