Уравнение (ax - 5 - x)/(x^2 - 4) = 0 равносильно системе: ax - 5 - x = 0, x^2 - 4 ≠ 0. Из первой части системы: x(a-1)=5, x = 5/(a-1). Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет. Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2: 1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5 2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5 ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.
Слагаемые, содержащие С перенесём в левую часть неравенства, а слагаемые с D - в правую, получим: 0,89 с +14,11 5 < 13d + 2d 15 с < 15 d. разделим обе части на 15 с < d. аналогично решаем остальные, х+8у<4х+5у х-4х< 5у - 8у -3х < -3у, разделим обе части неравенства на -3, знак неравенства поменяется на противоположный, получаем х>у 1,2s-2s > 4.3t -5.1t -0.8s > -.0.8t . делим на - 0,8 и знак неравенства меняем на противоположный s<t
-2-3х-9+4х+2-3,5х=-2,5х-9