М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marat20172003
marat20172003
06.07.2020 18:29 •  Математика

по кругу выписаны в некотором порядке все натуральные числа от 1 до n (n ≥ 2) так, что у любых двух соседних чисел есть одинаковая цифра.
найдите наименьшее возможное значение n.

решение:

ответ: 29.
поскольку однозначные числа не имеют общих цифр, то n > 9.
а так как числа, соседние с числом 9, должны содержать девятку в своей записи, то меньшее из них не может быть меньше, чем 19, а большее — меньше, чем 29.
следовательно, n ≥ 29.

равенство n = 29 возможно, поскольку условиям удовлетворяет, например, такой порядок расстановки чисел от 1 до 29 по кругу:
1, 11, 10, 20, 21, 12, 2, 22, 23, 3, 13, 14, 4, 24, 25, 5, 15, 16, 6, 26, 27, 7, 17, 18, 8, 28, 29, 9, 19.

2.
в треугольнике abc на стороне ac нашлись такие точки d и e, что ab = ad и be = ec (e между a и d).
точка f — середина дуги bc окружности, описанной около треугольника abc.
докажите, что точки b, e, d, f лежат на одной окружности.

решение:

обозначим ∠ bda через .
тогда , (ab = ad), .
точки e и f равноудалены от точек b и c, поэтому fe — серединный перпендикуляр к отрезку bc, следовательно,
.
итак, , т.е. точки b, f, d, e — на одной окружности.

3.
произведение положительных чисел x, y и z равно 1.
известно, что .
докажите, что для любого натурального k выполнено неравенство

решение:

если abc = 1, то неравенства и (a – 1)(b – 1)(c – 1) ≤ 0 равносильны.
действительно, из того, что , , и abc – 1 = 0 следует, что они оба равносильны неравенству bc + ca + ab ≥ a + b + c.
кроме того, числа t – 1 и tk – 1 имеют при k > 0 одинаковый знак. поэтому
.

4.
лабиринт представляет собой квадрат 8 × 8, в каждой клетке 1 × 1 которого нарисована одна из четырёх стрелок (вверх, вниз, вправо, влево).
верхняя сторона правой верхней клетки — выход из лабиринта. в левой нижней клетке находится фишка, которая каждым своим ходом перемещается на одну клетку в направлении, указанном стрелкой.
после каждого хода стрелка в клетке, в которой только что была фишка, поворачивается на 90 по часовой стрелке.
если фишка должна сделать ход

сквозь стенку квадрата, она остаётся на месте, но стрелка по-прежнему поворачивается на 90 по часовой стрелке.
докажите, что рано или поздно фишка выйдет из лабиринта.

решение:

предположим, что фишка никогда не выйдет из лабиринта.
тогда на клетку с номером 1 фишка попадёт конечное число раз (менее 4), т.к. в противном случае, когда стрелка покажет на выход, фишка из лабиринта уйдёт.
аналогично получаем, что после того, как фишка в последний раз побывает на поле < < 1> > , она конечное число раз побывает на полях с номером < < 2> > .
продолжая рассуждения получаем, что на поле с номером k, 1 ≤ k ≤ 14 она конечное число раз побывает на поле с номером k + 1.
значит, на каждом поле фишка побывает конечное число раз, что противоречит неограниченности числа ходов.
следовательно, фишка должна выйти из лабиринта.

5.
все клетки клетчатой плоскости окрашены в 5 цветов так, что в любой фигуре вида ,

все цвета различны.
докажите, что и в любой фигуре вида

все цвета различны.

решение:

предположим, что в некоторой фигуре 1 × 5 отсутствует некоторый цвет, например, синий (на рисунке эта фигура выделена).
тогда в каждой паре клеток, обозначенных одинаковыми буквами, присутствует синий цвет (в противном случае его не будет в одной из крестообразных фигур, включающих эти пары клеток).
но тогда одна из двух крестообразных фигур, включающих клетки, обозначенные буквами a и c, содержит 2 клетки синего цвета. противоречие.

6.
докажите, что каждое натуральное число является разностью двух натуральных чисел, имеющих одинаковое количество простых делителей.
(каждый простой делитель учитывается 1 раз, например, число 12 имеет два простых делителя: 2 и 3.)

решение:

если данное число n — чётно, т.е. n = 2m, то искомыми числами будут k = 4m и l = 2m.

пусть n — нечётно, p1, … ,ps — его простые делители и p — наименьшее нечетное простое число, не входящее во множество p1, … ,ps.
тогда искомыми будут числа k = pn и l = (p – 1)n, так как, в силу выбора p, число p – 1 имеет своими делителями число 2, и, возможно, какие-то из чисел p1, … ,ps.

7.
в треугольнике abc ( ab > bc ) k и m — середины сторон ab и ac, o — точка пересечения биссектрис.
пусть p — точка пересечения прямых km и co, а точка q такова, что qp ⊥ km и qm || bo.
докажите, что qo ⊥ ac.

решение:

опустим перпендикуляр or на прямую ac.
пусть перпендикуляр к прямой km, восставленный в точке p, пересекает прямую or в точке q′.
достаточно доказать, что mq′||bo, т.к. это будет означать, что точки q и q′ . так как km||bc, то .
тогда в , откуда mp = mc = ma,
поэтому точка p лежит на окружности с диаметром ac и ∠ apc = 90.
в четырёхугольнике apor ∠ apo = ∠ aro = 90,
следовательно он вписанный, отсюда ( ∠ rpo = ∠ rao опираются на одну дугу).
в четырёхугольнике mpq′r ∠ mpq′ = ∠ mrq′ = 90, следовательно, он вписанный, отсюда .
если bo пересекает ac в точке d, то из ∆ bcd: .
отсюда mq′ || bo.

👇
Открыть все ответы
Ответ:
alicebro1
alicebro1
06.07.2020

Предположим, что в бельэтаж было куплено х билетов, тогда на балкон было куплено0,4х билетов, а в партер было куплено 1,5(0,4х+х) или 2,1х билетов, также из условия задачи известно, что всего было куплено 70 билетов

согласно этим данным составим и решим уравнение:

0,4х+х+2,1х=70

3,5х=70

х=70:3,5

х=20 (б.) - было куплено в бельэтаж.

0,4х=0,4·20=8 (б.) - было куплено на балкон.

2,1х=2,1·20=42 (б.) - было куплено в партер.

ответ: в кукольный театр для учащихся было куплено 20 билетов в бельэтаж, 8 билетов на балкон и 42 билета в партер.

Проверка:

20+8+42=70 (б.) -  всего.

4,4(66 оценок)
Ответ:
Djdjjdjdjdjddjjx
Djdjjdjdjdjddjjx
06.07.2020

Взаимовлияние заключается в том, что существование одного порождает необходимость существования другого. Проще говоря, если есть производитель, необходим потребитель, иначе производителю нет выгоды заниматься производством, раз некому реализовывать товары. И наоборот, если появляется потенциальный потребитель, например тот, который хочет потреблять определенный товар, то кго потребность удовлетворяет появившийся производитель, которому выгодно производить товар, имеющий спрос.Производитель сможет продать такой товар по выгодной цене. Спрос порождает предложение. Избыточное предложение может снизить потребление, когда товара много, люди потребитель насыщается им очень быстро, и наоборот, когда овар дефицитен, то потребитель готов купить его даже по высокой цене. 

4,8(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ