Тааак ну смотри сторона первого квадрата 2 см так как у него 4 стороны: периметр 8 делим на 4 = 2, периметр второго квадрата это 8 * 3 тоесть 24 а если 24 : 4 то будет 6. отвечаем на первый вопрос ВО сколько раз сторона первого квадрата меньше второго 6 : 2 = 3 в 3 раза. на второй вопрос про площадь что бы найти площадь нужно длинну умножить на ширину тут и длинна и ширина равна площадь первого квадрата 2 * 2 = 4 площадь второго 6 * 6 = 36 36 делим на 4 равно 9.пишем так: 1)8:4=2(см)-сторона первого квадрата.2)8*3=24(см)-периметр второго квадрата.3)6:2=3(раза)4)2*2=4(см в квадрате) (над см пиши маленькую двоечку)-площадь 1-ого квадрата5)6*6=36(см в квадрате)-площадь 2-ого квадрата6)36:4=9(раз) ответ:сторона первого квадрата в 3 раза меньше второго, площадь второго квадрата в 9 раз бальше площади первого
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), вверх от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.
x U y
L C R
z D t
Сумма в верхнем левом квадрате 2х2: x + U + L + C ;
Сумма в верхнем правом квадрате 2х2: U + y + C + R ;
Сумма в нижнем левом квадрате 2х2: L + C + z + D ;
Сумма в нижнем правом квадрате 2х2: C + R + D + t ;
Сумма этих четырёх сумм будет:
S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =
= x + 2U + 2L + 4C + y + 2R + z + 2D + t =
= x + y + z + t + 2 ( U + L + R + D ) + 4C ;
Нам нужно добиться минимальности S, тогда в натуральные числа нужно брать минимальные натуральные числа, а значит и число 1. Величина числа C влияет на общую сумму сильней всего, поскольку число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, поэтому в первую очередь минимизировать нужно именно число С. Итак, С = 1 , а 4С=4 .
Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, поскольку величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), поэтому в эти величины нужно взять 4 минимальные натуральные числа отличные от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком именно порядке, т.е. просто:
( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;
2 ( U + L + R + D ) = 28 ;
Мы знаем, что полная сумма должна быть равна 50, т.е.:
x + U + y + L + C + R + z + D + t = 50 .
( x + y + z + t ) + ( U + L + R + D ) + C = 50 .
Подставим сюда величины, которым мы уже присвоили определённые значения:
( x + y + z + t ) + 14 + 1 = 50 .
x + y + z + t = 35 .
Мы никак не ограниченны в выборе разных чисел x, y, z и t , так что вполне можем подобрать какие-то натуральные числа, чтобы это выполнялось, например ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .
Все условия выполнены, числа взяты минимальные, в сумме квадратика 3х3 они дают 50, теперь посчитаем сумму всех сумм 2х2:
S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;
Відповідь:
Покрокове пояснення:
Чтобы найти надо разложить каждое число на простые числа, а потом перемножить числа, исключая повторяющиеся:
1) 270=2*3*3*3*5
324=2*2*3*3*3*3
450=2*3*3*5*5
НОК(270,324,450)=2*2*3*3*3*3*5*5=8100
2) 212=2*2*53
318=2*3*53
530=2*5*53
НОК (212,318,530)=3180