в математике, по определению, равно отношению длинны
произвольной окружности к диаметру
той же окружности, поскольку все окружности подобны друг другу, т.е.:
;
формула [1] ;
составляющую
часть от длины всей окружности, в данном конкретном случае
от длины всей окружности, то нам просто нужно умножить длину
всей окружности на эту самую часть 
формула [2] ;
см
см ;
см
см
см
см ;
см ;
см .
Каждый множитель входящий в данное произведение (ну единицу можно не считать), можно разложить в произведение простых множителей.
Затем подсчитать общее количество простого множителя = 5, (степень пятерки). Ведь 10=5*2. Двойки тоже можно подсчитать таким же образом, но их очевидно намного больше. Поэтому искомая степень десяти равно степени пятерки.
Теперь считаем, для начала выпишем все целые числа от 1 до 30, делящиеся на 5:
5; 10; 15; 20; 25; 30.
Степень пятерки, на которую делятся эти числа могут быть не только единичной. Выпишем для каждого приведенного числа степень пятерки, на которую оно делится.
Для 5, будет 5 в первой степени.
Для 10, будет 5 в первой степени.
-- 15 -- 5--
---20 -- 5---
---25 --- 5 во второй степени (т.е. 5^2).
---30 -- 5 в первой степени.
Теперь сосчитаем все эти пятерки: 1+1+1+1+2+1 = 7.
Т.о. данное в условие произведение делится на 5^7 (и не делится на большую степень пятерки). Степень же двойки будет намного больше (числа делящиеся на 2 и степени двойки встречаются гораздо чаще), поэтому среди них обязательно найдется 2^7.
ответ. 7 нулей.