(40 )на листке написаны несколько натуральных чисел. известно, что для любых двух найдется на листке число, которое на каждое из них делится. докажите, что на листке найдется число, которое делится на все числа.(листка с натуральными числами не должно быть )
f(0)=7,2 >0
f(1)=1-3,5-5+7,2=-0,3 <0
⇒
первый корень на [0;1]
Делим пополам
[0;0,5] и [0,5;1]
f(0,5)=0,5^4-3,5*0,5^3-5*0,5^2+7,2 >0⇒
корень на отрезке [0,5;1]
Снова делим пополам
[0,5;0,75] и [0,75;1]
f(0,75)=0,75^4-3,5*0,75^3-5*0,75^2+7,2 >0⇒
корень на отрезке [0,75;1]
Снова делим пополам
[0,75;0,875] и [0,875;1]
f(0,875)=0,875^4-3,5*0,875^3-5*0,875^2+7,2 >0⇒
корень на отрезке [0,875;1]
Снова делим пополам
[0,875;0,9375] и [0,9375;1]
f(0,9375)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 >0⇒
корень на отрезке [0,9375;1]
Снова делим пополам
[0,9375;0,96875] и [0,96875;1]
f(0,96875)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 >0⇒
корень на отрезке [0,96875;1]
Снова делим пополам
[0,96875;0,984375] и [0,984375;1]
f(0,984375)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 <0⇒
корень на отрезке [0,96875;0,984375]
x₁≈0,98
Аналогично,
f(4) <0
f(5) >0
второй корень на [4;5]
x₂≈4,5