1)
Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на , получаем
В левой части уравнения это ни что иное как формула производной частного, то есть :
Подсчитаем отдельный интеграл по частям.
2)
Это линейное однородное дифференциальное с постоянными коэффициентами. Замена , перейдём к характеристическому уравнению:
,
корни которого
и
. Тогда общее решение диф. уравнения:
и его первая производная
.
Осталось найти константы C₁ и C₂ , подставляя начальные условия.
— частное решение.
1) 160 : 5/12 = 160 : 5 · 12 = 384;
2) 5/8 · 384 = 384 : 8 · 5 = 240.
выражение: 160 : 5/12 · 5/8 = 240.
ответ: 240.