НОД (216 ; 336) = 2 ∙ 2 ∙ 2 ∙ 3 = 24
Пошаговое объяснение:
Разложим число 216 на простые множители. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
216 : 2 = 108 - делится на простое число 2
108 : 2 = 54 - делится на простое число 2
54 : 2 = 27 - делится на простое число 2
27 : 3 = 9 - делится на простое число 3
9 : 3 = 3 - делится на простое число 3.
Разложим число 336 на простые множители. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
336 : 2 = 168 - делится на простое число 2
168 : 2 = 84 - делится на простое число 2
84 : 2 = 42 - делится на простое число 2
42 : 2 = 21 - делится на простое число 2
21 : 3 = 7 - делится на простое число 3.
Выделим выпишем общие множители
216 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3
336 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 7
Общие множители (216 ; 336) : 2, 2, 2, 3
Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (216 ; 336) = 2 ∙ 2 ∙ 2 ∙ 3 = 24
ответ: а) -7 - (- 1,7)=-7+1,7=1,7-7=-5,3;
б )-1/3-2/9=-3/9-2/9=-5/9
в) 2,05 – 6 2/25=2,05-6,8=-4,75
а) 34 - z= 45 ⇒z=34-45=-11;
в) 2,2 - z= -1,8 ⇒z=2,2+1,8=4;
б) z- 14 = -9⇒z=14-9=5;
г) z-(-2,7) = 0,6⇒z=0,6+2,7=3,3.
a+12<12-a⇒2*a<0⇒a<0.
Пошаговое объяснение: