3 двухколёсных велосипеда
5 трёхколесных велосипедов
Пошаговое объяснение:
По условию задания известно, что велосипедов всего 8, а колес - 21.
Пусть двухколёсных велосипедов - х штук, тогда трёхколесных велосипедов - (8 - х) штук,
1. 2 * х = 2х - всего колёс у двухколёсных велосипедов
2. 3 * (8 - х) = (24 - 3х) - всего колёс у трёхколесных велосипедов
Составим уравнение:
2х + (24 - 3х) = 21
2х + 24 - 3х = 21
3х - 2х = 21 - 24
-х = -3
х = 3 - двухколёсных велосипеда
8 - 3 = 5 - трёхколесных велосипедов
Проверим:
3 * 2 + 5 * 3 = 6 + 15 = 21 колесо
3 двухколёсных велосипеда
5 трёхколесных велосипедов
Пошаговое объяснение:
По условию задания известно, что велосипедов всего 8, а колес - 21.
Пусть двухколёсных велосипедов - х штук, тогда трёхколесных велосипедов - (8 - х) штук,
1. 2 * х = 2х - всего колёс у двухколёсных велосипедов
2. 3 * (8 - х) = (24 - 3х) - всего колёс у трёхколесных велосипедов
Составим уравнение:
2х + (24 - 3х) = 21
2х + 24 - 3х = 21
3х - 2х = 21 - 24
-х = -3
х = 3 - двухколёсных велосипеда
8 - 3 = 5 - трёхколесных велосипедов
Проверим:
3 * 2 + 5 * 3 = 6 + 15 = 21 колесо
Пусть уравнения прямых имеют вид:
l₁:y=k₁x+m₁
l₂:y=k₂x+m₂
Прямые проходят через точку (5;25)
Подставим координаты точки в уравнения:
25=5k₁+m₁ ⇒m₁ =25-5k₁
25=5k₂+m₂ ⇒m₂=25-5k₂
Произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1):
k₁k₂=-1
Пусть k₁=k, тогда
По условию: прямая l₁ пересекает ось Ox в точке (a;0)
Подставляем координаты точки в уравнение l₁:y=kx+ 25-5k
0=ka+25-5k
и пересекает график функции y=x² в точке (b;b²).
Подставляем координаты точки в уравнение l₁:y=kx+ 25-5k
b²=kb+25-5k
Прямая l₂ пересекает ось Ox в точке (c;0)
Подставляем координаты точки в уравнение l₂:
и пересекает график функции y=x² в точке (d;d²)
Получаем систему:
{0=ka+25-5k
{b²=kb+25-5k
{
{
Перепишем:
{ka=5k-25
{kb=b²-25+5k
{
{
перемножаем:
abcd=