М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ushelemet
ushelemet
18.11.2020 14:36 •  Математика

2. Основание прямоугольника равно 12 м, высота – 8 м. Из него вырезан прямоугольный треугольник с катетами з м, 4 м и гипотенузой 5 м
Определите площадь и периметр полученной фигуры.

👇
Ответ:
Прост2004
Прост2004
18.11.2020
Площадь: 96-6=90
Периметр: 24+8+3+3+4=42
4,6(93 оценок)
Открыть все ответы
Ответ:
влада12342
влада12342
18.11.2020

a\in(-\infty, a_0)\cup(a_0,0)\cup(0,1/4), где a_0\approx-0.16

Пошаговое объяснение:

В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.

У числителя два неравных корня, если дискриминант больше нуля:

D=1-4a0

Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:

x^2-x+a=x^2-2x+a^2-6a=0\\\begin{cases}x=a^2-7a\\x^2-x+a=0\end{cases}

Подставляем найденный x в уравнение:

a^2(a-7)^2-a(a-7)+a=0\\a(a^3-14a^2+49a-a+7+1)=0\\a(a^3-14a^2+48a+8)=0

Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень a_0 единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции f(a)=a^3-14a^2+48a+8 равна f'(a)=3a^2-28a+48. При a < 1/4 производная положительна, кроме того, f(0)0, f(-1)<0, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для a_0 довольно-таки громоздкое, по графику a_0\approx-0.16


(x^2-x+a)/(x^2-2x+a^2-6a)=0 при каких значениях а данное уравнение будет иметь 2 различных корня?
4,7(73 оценок)
Ответ:
valeri0910200
valeri0910200
18.11.2020

a\in(-\infty, a_0)\cup(a_0,0)\cup(0,1/4), где a_0\approx-0.16

Пошаговое объяснение:

В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.

У числителя два неравных корня, если дискриминант больше нуля:

D=1-4a0

Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:

x^2-x+a=x^2-2x+a^2-6a=0\\\begin{cases}x=a^2-7a\\x^2-x+a=0\end{cases}

Подставляем найденный x в уравнение:

a^2(a-7)^2-a(a-7)+a=0\\a(a^3-14a^2+49a-a+7+1)=0\\a(a^3-14a^2+48a+8)=0

Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень a_0 единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции f(a)=a^3-14a^2+48a+8 равна f'(a)=3a^2-28a+48. При a < 1/4 производная положительна, кроме того, f(0)0, f(-1)<0, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для a_0 довольно-таки громоздкое, по графику a_0\approx-0.16


(x^2-x+a)/(x^2-2x+a^2-6a)=0 при каких значениях а данное уравнение будет иметь 2 различных корня?
4,6(9 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ