Допустим, в какой-то момент малыш Федя обгоняет Женю. Отметим это место специальной меткой, как условное начало круга. Как только он обгоняет Женю, он понимает, что (теперь уже) она – впереди него на расстоянии длины круговой дорожки (фактически она почти впритык позади него, но ведь дорожка круговая (!), а значит, Женя, как бы и впереди на расстоянии длины дорожки).
Пускай Женя пройдёт после первой встречи целый круг. Для того, чтобы Феде догнать Женю, ему нужно проехать всю круговую дорожку до того места, где в раз была Женя (т.е. целый круг) и ещё один круг, чтобы уже и догнать Женю второй раз. Но для этого ему нужно было бы ехать вдвое быстрее, т.е. на 100% быстрее, а он едет только на 75% быстрее. Значит, до второй встречи Женя успеет пройти больше, чем один круг.
Итак, учитывая это, пускай теперь до нового места встречи Женя пройдёт целый круг от метки до метки, и ещё дополнительно от метки какую-то часть круговой дорожки, назовём это «кусок дорожки», а малыш Федя до этого нового места встречи проедет на велосипеде целых два круга и ещё такую же часть дорожки, как и Женя, т.е. такой же «кусок».
Новое место встречи, таким образом, сместилось от начальной метки на «кусок дорожки».
После второй встречи, Федя опять обгонит Женю и потом опять встретится с ней уже в третий раз со смещением ещё на один «кусок дорожки» от предыдущего места встречи, которое и так уже было смещено от начальной метки на «кусок дорожки», стало быть, третья встреча сместится от начальной метки на «два куска дорожки».
До второго места встречи Женя круг и ещё «кусок дорожки», а Федя проехал два круга и «кусок дорожки».
До третьего места встречи Женя 2 круга и ещё «два куска дорожки», а Федя проехал четыре круга и ещё «два куска дорожки».
До четвёртого места встречи Женя 3 круга и ещё «три куска дорожки», а Федя проехал шесть кругов и ещё «три куска дорожки».
Заметим, что если бы Женя к четвёртому месту встречи, смещённому от начальной метки на «три куска дорожки бы 4 целые круга (три плюс один), то тогда Федя проехал бы 6 кругов и ещё «три куска дорожки», т.е. такое же расстояние, как и Женя, а значит ещё один добавочный круг, и всего – семь кругов.
И это как раз и сходится с их соотношением скорости. 7 кругов ведь на 75% больше, чем 4 круга. Всё правильно, Федя ведь ездит на 75% быстрее, а значит, он и должен проехать не 4 круга, как Женя, а 7 кругов!
Значит, наше предположение верно. К четвёртой встрече Женя проходит четыре полных круга, а стало быть, она приходит к начальной метке, которую мы отметили в месте первой встречи, т.е. место четвёртой встречи совпадает с местом первой встречи. Дальнейшие встречи станут совпадать со встречами в первом цикле рассуждений. Таким образом, всего существует 3 разных места, где Федя обгоняет Женю.
Так же, эту задачу можно решить и «аналитически», через введение неизвестного параметра скорости, и рассмотрения относительной скорости участников, т.е. скорости сближения.
Пусть скорость Жени равна Тогда скорость Феди равна Когда Федя догоняет Женю, их скорость сближения равна (вычитаем, поскольку Женя уходит от догоняющего её Феди, тем самым, как бы мешая ему себя догонять). Иначе можно сказать, что скорость Жени в раза больше, чем скорость сближения, поскольку
Когда Федя в очередной раз обгоняет Женю, его удалённость от Жени, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Жени, Женя пройдет по круговой дорожке в раза большее расстояние, поскольку её скорость в раза больше скорости сближения.
Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Женя проходит круг и ещё треть круговой дорожки. Значит за 3 дополнительные встречи (после первой начальной) она и пройдёт полный круг, вернувшись к начальной метке. Т.е. всего существует 3 места, в которых малыш Федя обгоняет пешую Женю.
4) Появившаяся в начале XIX века великая комедия А. С. Грибоедова “Горе от ума” открыла новый этап в развитии русской литературы. Все созданные драматургом характеры имеют не только историко-литературное, но и общечеловеческое значение. Одной из безусловных находок автора стал образ Молчалина. Этот персонаж вобрал в себя черты социально-психологического типа, которому, к сожалению, суждена была долгая жизнь на Руси.
Тип Молчалина — один из самых распространенных в русской литературе. Но первая встреча с этим образом происходит в пьесе “Горе от ума”. Заслуга автора — создание литературного типа Молчалина, который стал крупным приобретением общественной мысли. Грибоедов проявил большую силу публицистического обобщения. Маленького чиновника — секретаря Фамусова — автор возвел в символ значительной социально-политической группы, крепко связав “молчалинство” с “фамусовщиной”. Создавая характер Молчалина, Грибоедов показал влияние чиновничьей морали на развитие и поведение человека. С детства героя учили рабскому угодничеству перед сильными мира сего. Выполнение отцовского завета ему и “на-гражденья брать и весело пожить”. Но, с другой стороны, у него как у мелкого провинциального чиновника не было другого выхода. Молчалин — мастер в искусстве поднять платок, смолчать, когда его бранят, он за это получил три награждения, чин асессора, и находится в дружбе со многими влиятельными людьми.
Позднее Д. Писарев писал: “Молчалин сказал себе: “Я хочу составить карьеру”, — и пошел по той дороге, которая ведет к “степеням известным”: пошел и уже не своротит ни вправо, ни влево; умирай его мать в стороне от дороги, зови его любимая женщина в соседнюю рощу, плюй ему весь свет в глаза, чтобы остановить его движение, он все будет идти и дойдет...”
Показывая противостояние Чацкого и Фамусова, А.С.Грибоедов поднимает проблему “века нынешнего” и “века минувшего”. Эти герои — люди разных поколений, в то время как Чацкий и Молчалин — ровесники, но тем резче между ними контраст. Каждый из них показывает один из вариантов пути, который может выбрать молодежь: путь правдоискателей и бунтарей (путь Чацкого) и путь “бессловесных”, которые достигнут “степеней известных” (путь Молчалина).
Допустим, в какой-то момент малыш Федя обгоняет Женю. Отметим это место специальной меткой, как условное начало круга. Как только он обгоняет Женю, он понимает, что (теперь уже) она – впереди него на расстоянии длины круговой дорожки (фактически она почти впритык позади него, но ведь дорожка круговая (!), а значит, Женя, как бы и впереди на расстоянии длины дорожки).
Пускай Женя пройдёт после первой встречи целый круг. Для того, чтобы Феде догнать Женю, ему нужно проехать всю круговую дорожку до того места, где в раз была Женя (т.е. целый круг) и ещё один круг, чтобы уже и догнать Женю второй раз. Но для этого ему нужно было бы ехать вдвое быстрее, т.е. на 100% быстрее, а он едет только на 75% быстрее. Значит, до второй встречи Женя успеет пройти больше, чем один круг.
Итак, учитывая это, пускай теперь до нового места встречи Женя пройдёт целый круг от метки до метки, и ещё дополнительно от метки какую-то часть круговой дорожки, назовём это «кусок дорожки», а малыш Федя до этого нового места встречи проедет на велосипеде целых два круга и ещё такую же часть дорожки, как и Женя, т.е. такой же «кусок».
Новое место встречи, таким образом, сместилось от начальной метки на «кусок дорожки».
После второй встречи, Федя опять обгонит Женю и потом опять встретится с ней уже в третий раз со смещением ещё на один «кусок дорожки» от предыдущего места встречи, которое и так уже было смещено от начальной метки на «кусок дорожки», стало быть, третья встреча сместится от начальной метки на «два куска дорожки».
До второго места встречи Женя
круг и ещё «кусок дорожки»,
а Федя проехал два круга и «кусок дорожки».
До третьего места встречи Женя
2 круга и ещё «два куска дорожки»,
а Федя проехал четыре круга и ещё «два куска дорожки».
До четвёртого места встречи Женя
3 круга и ещё «три куска дорожки»,
а Федя проехал шесть кругов и ещё «три куска дорожки».
Заметим, что если бы Женя к четвёртому месту встречи, смещённому от начальной метки на «три куска дорожки бы 4 целые круга (три плюс один), то тогда Федя проехал бы 6 кругов и ещё «три куска дорожки», т.е. такое же расстояние, как и Женя, а значит ещё один добавочный круг, и всего – семь кругов.
И это как раз и сходится с их соотношением скорости. 7 кругов ведь на 75% больше, чем 4 круга. Всё правильно, Федя ведь ездит на 75% быстрее, а значит, он и должен проехать не 4 круга, как Женя, а 7 кругов!
Значит, наше предположение верно. К четвёртой встрече Женя проходит четыре полных круга, а стало быть, она приходит к начальной метке, которую мы отметили в месте первой встречи, т.е. место четвёртой встречи совпадает с местом первой встречи. Дальнейшие встречи станут совпадать со встречами в первом цикле рассуждений. Таким образом, всего существует 3 разных места, где Федя обгоняет Женю.
Так же, эту задачу можно решить и «аналитически», через введение неизвестного параметра скорости, и рассмотрения относительной скорости участников, т.е. скорости сближения.
Пусть скорость Жени равна
Когда Федя в очередной раз обгоняет Женю, его удалённость от Жени, которую он встретит в будущем, в следующем месте обгона, составляет как раз один круг. За время, пока Федя доедет до нового обгона Жени, Женя пройдет по круговой дорожке в
Из этого и следует, что за время между двумя очередными последовательными встречами, которые разделяют участников движения расстоянием в один круг, Женя проходит круг и ещё треть круговой дорожки. Значит за 3 дополнительные встречи (после первой начальной) она и пройдёт полный круг, вернувшись к начальной метке. Т.е. всего существует 3 места, в которых малыш Федя обгоняет пешую Женю.
О т в е т : (б) в 3 точках.