Пусть вершинами прямоугольный трапеции являются точки A,B,C,D; где AB и CD - боковые стороны, BC и AD - основания; боковая сторона AB и основание AD образуют прямой угол. Пусть M, N, P, K - точки касания окружности и сторон трапеции AB, BC, CD, AD соответственно, тогда, проставив радует, получим, что OK = AK = AM = MB = BN = ON = 20 см, NC = CP = 8 см, PD = KD = 50 см; отсюда получается, что AB = AM + MB = 20 см + 20 см = 40 см; BC = BN + NC = 20 см + 8 см = 28 см; CD = CP + PD = 8 см + 50 см = 58 см; AD = AK + KD = 20 см + 50 см = 70 см; Периметр равен AB + BC + CD + AD = 196 см
Пишем вероятности событий p1 = 0.7 q1 = 1-0.7=0.3 p2 = 0.8 q2 = 0.2 А теперь разные события по условию задачи. Событие А - сдаст И 1-1 И 2-й - Р(А) =p1*p2 = 0.7*0.8 = 0.56 = 56% - ОТВЕТ Событие Б - не сдаст И 1-й И 2-й - Р(Б) = q1*q2 = 0.3*0.2= 0.06 = 6% - ОТВЕТ Событие В - сдаст ТОЛЬКО один - Р(В) = p1*q2 + q1*p2 =0.7*0.2+0.8*0.3 = =0,14+0,24 = 0,38 = 38% - ОТВЕТ Событие Г - сдаст ХОТЯ бы один - ИЛИ 1-й ИЛИ 2-й ИЛИ оба. Р(Г) = p1*q2+ q1*p2 + p1*p2 = 0.7*0.2+0.3*0.8+0.7*0.8 = 0.14+0.24+0.56=94% - ОТВЕТ или Можно рассчитать как обратное событию Б Р(Г)= 1 - Р(Б) = 1-0,06=0,94