Пошаговое объяснение:
Надо привести к уравнению окружности:
(x - Xo)² + (y - Yo)² = R².
Перепишем данное уравнение. Первая окружность.
x² -10*x + y² + 16*y + 80 = 0
(x² - 2*x*5 + 5²) - 25 + (y² + 2*y*8 + 8²) - 64 + 80 = 0
(x-5)² + (y+8)² = 25+64-80 = 89-80 = 9 = 3²
Радиус - R =3, центр в точке А(5;-8) - первая окружность - ответ.
Вторая окружность.
(x² + 2*x*3 + 3²) - 9 + (y² + 2*y*2 + 2²) - 4 - 12 = 0.
(x+3)² + (y+2)² = 9+4+12 = 25 = 5² = R²
Радиус - R = 5, центр в точке В(-3;-2) - вторая окружность - ответ.
Уравнение прямой АВ
ДАНО: А(5;-8), В(-3;-2) НАЙТИ: Y = k*x + b
1) k = ΔY/ΔX = (Аy-Вy)/(Аx-Вx)=(-8-(-2))/(5-(-3))= -0,75 - коэффициент наклона прямой
2) b=Аy-k*Аx=-8-(-0,75)*5= -4,25- сдвиг по оси ОУ
Уравнение прямой Y(АВ) = -0,75*x - 4,25 - ответ.
Расстояние АВ по теореме Пифагора.
a = Аy-Вy = -8 - (-2) = -6
b = Аx-Вx = 5 - (-3) = 8
c² = a² + b² = 36+64 = 100
c = AB = √100 = 10 - расстояние АВ - ответ.
Максимальное количество правдивых гоблинов - 56.
По одному с каждого края и далее - через одного.
По условию, справа и слева от каждого правдивого должны стоять лжецы.
Иначе правдивые солгут.
Справа и слева от каждого лжеца должны стоять правдивые.
Иначе лжецы скажут правду.
Возможно чередование, когда вначале и в конце стоят лжецы. Условие будет соблюдено, однако, в этом случае лжецов будет на 1 больше, чем правдивых.
То есть максимальное количество правдивых:
111 = 110 + 1 = 55*2 + 1 = 56 + 55
56 правдивых гоблинов и 55 лжецов.