М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruslanalsibaev
ruslanalsibaev
18.11.2020 13:08 •  Математика

Зная что 3<а<8 оцените значения выражения

👇
Открыть все ответы
Ответ:
madamburkova20
madamburkova20
18.11.2020

Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда

\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.

Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,

\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.

Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,

\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.

Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).

Пример 1. Вычислим \int\cos2t\,dt.

Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,

\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.

Замечание. Вычисление короче записывают так:

\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.

Пошаговое объяснение:

4,5(71 оценок)
Ответ:
sonjasonjasonja
sonjasonjasonja
18.11.2020
Літо  (непошир.  звертання),  до  побачення! і за все і, за  поля квітучії, ліс зеленокрилий  (поширене  розвивайся, старий дубе,  (поширене  зверт.) завтра мороз буде. до тебе, люба річенько,  (поширене  зверт.)   ще вернеться весна. спи, моя дитина золота,  (поширене  зверт.)   спи, моя  тривога кароока  (поширене  зверт.) . не плачте, мамо,  (непоширене зверт.)    не треба, і ви не журіться, тато  (непоширене зверт.)  .
4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ