А)
(2k)/(2k+6)=(k+2)/(2k)
(2k)/(2(k+3))=(k+2)/(2k) ×2
(2k)/(k+3)=(k+2)/k
2k²=(k+2)(k+3)
2k²-k²-3k-2k-6=0
k²-5k-6=0; D=25+24=49
k₁=(5-7)/2=--2/2=-1 - согласно условию задания, этот корень не подходит для уравнения.
k₂=(5+7)/2=12/2=6
ответ: 6.
б)
Сумма бесконечно убывающей геометрической прогрессии:
S=b₁/(1-q)
q=b₂/b₁=(2k)/(2k+6)=(2k)/(2(k+3))=k/(k+3)=6/(6+3)=6/9=2/3
S=(2k+6)/(1 -2/3)=2(k+3)/(3/3 -2/3)=2(6+3)/(1/3)=6·9=54
ответ: 54.
Это другая задача Для решения этой задачи используем формулы арифметической прогрессии.
а₁=5 [в первый день 5 капель]
[день, в который нужно выпить 40 капель]
d=5 [разность арифметической прогрессии, т.к. каждый день дозировка увеличивается на одну и ту же величину - 5 капель]
На восьмой день дозировка составит 40 капель.
По формуле суммы n первых членов арифметической прогрессии найдм сколько всего капель нужно выпить больному за 8 дней.
180 капель должен выпить больной за первые 8 дней лечения.
В последний период лечения больной должен уменьшать дозировку каждый день на 5 капель, и с дозировки в 40 капель дойти до 5 капель.
На это ему понадобиться 8 дней (также, как и в первый период лечения).
Суммарное количество капель, которые должен выпить больной за эти 8 дней, составит 180.
В середине лечения больной должен три дня подряд пить по 40 капель. Два раза по 40 капель мы уже учли. Поэтому к общей сумме добавим только 40.
180+180+40 = 400 (капель) - должен выпить больной за весь период лечения.
В одном пузырьке содержится 200 капель лекарства. Значит больному нужно купить 400:200 = 2 пузырька лекарства.
ответ: 2 пузырька.
Как-бы 20 грамм, чего?