М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Khidjana95
Khidjana95
16.01.2020 17:41 •  Математика

Одна сиорона треугольника в 3 раза меньше второй и на 23 дм меньше третьей. найдите стороны треугольника, если его периметр равен 108 дм​

👇
Ответ:
lebedd50
lebedd50
16.01.2020

первая сторона--- 3х       вторая стоона х    третья---х+23

3х+х+х+23=108

5х=108-23

5х=85

х=85:5     х=17дм (2я стор)

3*17=51дм (1я стор)     17+23=40дм (3я стор)

проверм: 40+17+51=108

Пошаговое объяснение:

4,7(58 оценок)
Открыть все ответы
Ответ:
Числа 2²=4, 3²=9, 5²=25, 7²=49, 11²=121 имеют ровно три различных натуральных делителя. Например, число 2²=4 делится на 1, 2 и 4, аналогично для остальных чисел.

Так как простых чисел бесконечно много, мы можем для любого простого p рассмотреть число p². Это число также имеет ровно 3 различных натуральных делителя — 1, p и p². Значит, чисел, имеющих 3 различных натуральных делителя, также бесконечно много.

Замечу, что при решении задачи мы предполагаем, что нужно найти натуральные числа, которые имеют ровно 3 различных натуральных делителя. Если требуется указать целые числа, которые имеют ровно 3 различных целых делителя, то задача не имеет решения. Если n=1,-1, то делителей два — 1 и -1. Если n по модулю больше 1, то делителей минимум четыре — 1, -1, n, -n.
4,6(86 оценок)
Ответ:
Loooooper
Loooooper
16.01.2020
Числа 2²=4, 3²=9, 5²=25, 7²=49, 11²=121 имеют ровно три различных натуральных делителя. Например, число 2²=4 делится на 1, 2 и 4, аналогично для остальных чисел.Так как простых чисел бесконечно много, мы можем для любого простого p рассмотреть число p². Это число также имеет ровно 3 различных натуральных делителя — 1, p и p². Значит, чисел, имеющих 3 различных натуральных делителя, также бесконечно много.Замечу, что при решении задачи мы предполагаем, что нужно найти натуральные числа, которые имеют ровно 3 различных натуральных делителя. Если требуется указать целые числа, которые имеют ровно 3 различных целых делителя, то задача не имеет решения. Если n=1,-1, то делителей два — 1 и -1. Если n по модулю больше 1, то делителей минимум четыре — 1, -1, n, -n.Подробнее - на -
4,8(95 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ