Доказательство заключается в следующем: исходя из того, что точка F принадлежит биссектрисе DEB, можно сделать вывод, что расстояние от точки F до прямых DE и BE одинаково. Соответственно и расстояния от F до AD и от F до DE одинаковы. И, если расстояния от F до прямых AD и BE одинаковы, то точка F лежит на биссектрисе угла ACB. Зная по условиям задачи, что треугольник ABC равнобедренный, откуда следует, что медиана и биссектриса совпадают, то тогда точка F лежит на медиане, и, следовательно, является серединой основания AB.
ответ:
пусть дана равнобокая трапеция abcd, bc||ad, угол abc = углу bcd и они больше 90 градусов
треугольник abc- равнобедренный и угол bac= углу bca
диагональ ac является секущей между параллельными линиями bc и ad, поэтому угол cad= углу bca и естественно равен углу adc
тогда угол acd=углу bac + угол bca
и тогда будем иметь
пусть угол bac=x, тогда угол acd=2x и угол bcd=3x, а значит и угол abc=3x
угол cad=2x и угол acd тоже равен 2x
в целом получаем, что
3x+3x+2x+2x=360 градусов
10x=360 => x= 36 градусов
то есть угол abc=углу bcd = 108 градусов.
угол bad = углу cda=72 градуса.
!