М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kozlovavika200
kozlovavika200
21.04.2022 19:05 •  Математика

Доказать что для произвольных чисел a b c d оправдается равенство 1/а + 1/b + 1/c + 1/c >= 64/(a+b+c+d)

👇
Ответ:
strukserzh
strukserzh
21.04.2022

Для начала докажем то, что называется неравенством Коши-Буняковского-Шварца:

Рассмотрим два набора чисел: \{a_{i}\}=a_{1},a_{2},...,a_{n}и \{b_{i}\}=b_{1},b_{2},...,b_{n}.

Тогда выполнено неравенство: (\sum\limits_{i=1}^{n}a_{i}^{2})(\sum\limits_{i=1}^{n}b_{i}^{2})\geq (\sum\limits_{i=1}^{n}a_{i}b_{i})^{2};

Это неравенство можно доказывать по-разному. Заметим, что скалярное произведение векторов \textbf{a}и \textbf{b}есть \textbf{a}\times\textbf{b}=(\sum\limits_{i=1}^{n}a_{i}b_{i}), где a_{i},b_{i} - координаты составляющих вектора. Поскольку скалярное произведение векторов всегда не превосходит произведения модулей векторов (так как \textbf{a}\times\textbf{b}=|a|\times|b|\times\cos\phi,\; |\cos\phi|\leq 1), то отсюда немедленно следует неравенство (ведь сумма квадратов в рассматриваемом неравенстве - это квадрат модуля вектора).

__________________________

Сделаем замену: a_{i}=\frac{x_{i}}{\sqrt{y_{i}}},\; b_{i}=\sqrt{y_{i}}; Получим неравенство: (\sum\limits_{i=1}^{n}\frac{x_{i}^{2}}{y_{i}} )\geq \frac{(\sum\limits_{i=1}^{n}x_{i})^2}{\sum\limits_{i=1}^{n}y_{i}}

Полагая n=4 и \forall\; i:x_{i}=1, получим: \frac{1}{y_{1}}+\frac{1}{y_{2}}+\frac{1}{y_{3}}+\frac{1}{y_{4}}\geq \frac{16}{y_{1}+y_{2}+y_{3}+y_{4}}

4,6(52 оценок)
Открыть все ответы
Ответ:
Facegga
Facegga
21.04.2022
Sin 3x + Sin 5x = 2(Cos² 2x - Sin² 3x)

Для левой части ур-ия применим формулу суммы синусов:
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2)
А для правой части формулы понижения степени:
Cos² x = (1 + Cos 2x) / 2
Sin² x = (1 - Cos 2x) / 2

То есть:
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))

2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x

2Sin 4x · Cos x = Cos 4x + Cos 6x

Для правой части ур-ия применим формулу суммы косинусов:
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)

2Sin 4x · Cos x = 2Cos 5x * Cos x

2Sin 4x · Cos x - 2Cos 5x * Cos x = 0

Выносим общий множитель 2Cos x:
2Cos x · (Sin 4x - Cos 5x) = 0

Отсюда:
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое

Sin 4x - Cos 5x = 0

Cos (π/2 - 4x) - Cos (5x) = 0

Применяем формулу разности косинусов:
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)

То есть:
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0

1) Sin ((π/2 + x)/2) = 0
(π/2 + x)/2 = πk
π/2 + x = 2πk
x = -π/2 + 2πk

2) Sin ((π/2 - 9x)/2) = 0
(π/2 - 9x)/2 = πk
π/2 - 9x = 2πk
9x = π/2 - 2πk
x = π/18 - 2π/(9k)

ответ:
x = ±π/2 + 2πk, k — целое
x = π/18 - 2π/(9k)
4,8(95 оценок)
Ответ:
dashaponomarev4
dashaponomarev4
21.04.2022
На всякий случай,объясню,как раскладывать на простые множители) Берёшь таблицу простых чисел и по порядку делишь данное число на простые от 2 и далее,их можно повторять.Например,3 раза поделить на 2. Таким образом у 150 простые множители это 2,5,5 и 3 (две 5-ки,а не одна),у 180: 2,2,3,3,5,у 400:2,2,2,5,5 Наименьшее общее кратное я,если честно,уже не помню,как находить через множители,но я делаю так: беру наибольшее число,сначала проверяют кратно ли оно остальным,если да,то оно наименьшое кратное,если нет,то умножают его на 2 и опять проверяют,потом на 3 и т.д.,пока не найдётся оно) А здесь наименьшее общее кратное это 3600. Я надеюсь,я довольно доступно объяснила и больше у тебя проблем с этим не будет)
4,4(8 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ