1) 120 = 2³ · 3 · 5; 60 = 2² · 3 · 5
НОК (120 и 60) = 2³ · 3 · 5 = 120 - наименьшее общее кратное
НОД (120 и 60) = 2² · 3 · 5 = 60 - наибольший общий делитель
2) 30 = 2 · 3 · 5; 75 = 3 · 5²
НОК (30 и 75) = 2 · 3 · 5² = 150 - наименьшее общее кратное
НОД (30 и 75) = 3 · 5 = 15 - наибольший общий делитель
3) 6 = 2 · 3; 72 = 2³ · 3²
НОК (6 и 72) = 2³ · 3² = 72 - наименьшее общее кратное
НОД (6 и 72) = 2 · 3 = 6 - наибольший общий делитель
4) 16 = 2⁴; 48 = 2⁴ · 3
НОК (16 и 48) = 2⁴ · 3 = 48 - наименьшее общее кратное
НОД (16 и 48) = 2⁴ = 16 - наибольший общий делитель
5) 121 = 11²; 99 = 3² · 11
НОК (121 и 99) = 3² · 11² = 1089 - наименьшее общее кратное
НОД (121 и 99) = 11 - наибольший общий делитель
6) 17 - простое число, поэтому
НОК (17 и 15) = 17 · 15 = 255 - наименьшее общее кратное
НОД (17 и 15) = 1 - наибольший общий делитель
40
Пошаговое объяснение:
120 не делится нацело на 16, 18 и 32, поэтому эти варианты откидываем.
Остаётся 24 и 40
разлаживаем на множители
24=2*2*2*3
15=3*5
40=2*2*5*2
НОК - это наименьшее общее кратное, для него ты берешь по одному разу общие множители из тех чисел, которые тебе даны и перемножаешь их. Затем домножаешь на то, чего нет у всех
НОК (24,15)=3*2*2*2*5=120
НОК (40,15)=5*3*8=120
Выбираешь самое большое