Пусть собственная скорость пловца равна х м/мин, тогда скорость по течению равна (х+15) м/мин, а скорость против течения - (х-15) м/мин. Некоторое расстояние по течению он проплыл за 24 с = 0,4 мин, значит он проплыл: 0,4*(х+15) м, а против течения - за 40 с = 2/3 мин, значит, он проплыл 2/3*(x-15) м. По условию известно, что и по течению, и против течения мальчик проплыл одинаковое расстояние, поэтому составим уравнение:
Вот 1) Ax + By + C = 0 Направляющий вектор этой прямой s={A,B}={2;-3}. Значит, нормальный вектор будет n={3;2} Вектор нормали перпендикулярный к даной прямой. Значит 3x + 2y + c = 0 По условию P(-5;13), откуда х=-5 и у=13. Подставим 3 * (-5) + 2* 13 + C = 0 -15 + 26 + C = 0 C = -11
-7-19
-26
ну вот вроде бы норм