1) Поскольку за х рублей можно купить 3 м ситца, то для того чтобы узнать стоимость одного метра ситца, нужно стоимость трех метров ситца разделить на количество метров: х : 3 = х/3. 2) Поскольку за х рублей можно купить 2 м полотна, то для того чтобы узнать стоимость одного метра полотна, нужно стоимость двух метров ситца разделить на количество метров: х : 2 = х/2. 3) Узнаем на сколько рублей полотно дороже ситца: х/2 - х/3 = х(1/2 - 1/3) = х(3-2)/6 = х/6 рублей. ответ: на х/6 рублей полотно дороже ситца.
Пошаговое объяснение:
1) Поскольку за х рублей можно купить 3 м ситца, то для того чтобы узнать стоимость одного метра ситца, нужно стоимость трех метров ситца разделить на количество метров: х : 3 = х/3. 2) Поскольку за х рублей можно купить 2 м полотна, то для того чтобы узнать стоимость одного метра полотна, нужно стоимость двух метров ситца разделить на количество метров: х : 2 = х/2. 3) Узнаем на сколько рублей полотно дороже ситца: х/2 - х/3 = х(1/2 - 1/3) = х(3-2)/6 = х/6 рублей. ответ: на х/6 рублей полотно дороже ситца.
1.Приведите примеры обыкновенных дробей. 1/3 29/80
2.Числитель дроби – это… число над дробной чертой
3.Знаменатель дроби – это… число под дробной чертой
4.Рациональное число – это число, которое… может быть представлено в виде дроби
5.Натуральное число можно записать в виде дроби… со знаменателем 1.
6.Приведите пример для пункта 5. 10/1 43/1
7.Как можно получить дробь, равную данной дроби? … Умножить числитель и знаменатель на одно и то же число.
8.Приведите пример к пункту 7. 1/5 = 2/10; 3/4 = 9/12
9.Как можно сократить дробь? … Разделить числитель и знаменатель на одно и то же число.
10.Приведите пример к пункту 9. 5/20 = 1/4
11.Какую дробь называют несократимой? Если числитель и знаменатель нельзя разделить на одно и то же число
12. Приведите пример к пункту 11. 33/58
13.Чему равна дробь, числитель и знаменатель которой равны? единице
14.Приведите пример к пункту 13. 11/11 = 1
15.Сформулируйте алгоритм приведения двух дробей к наименьшему общему знаменателю. Для приведения дробей к общему знаменателю надо: разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
16.Уметь решать задания типа №798-803
17.Пять правил сравнения дробей. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше. Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше. Чтобы сравнить две дроби с разными числителями и знаменателями, надо найти их общий знаменатель.
18. Уметь решать задания типа №809-815
19.Два правила сложения дробей. Чтобы сложить две обыкновенные дроби, следует: привести дроби к наименьшему общему знаменателю; сложить числители дробей, а знаменатель оставить без изменений; сократить полученную дробь; если получилась неправильная дробь преобразовать неправильную дробь в смешанную.
20.Какая дробь называется правильной? у которой числитель меньше знаменателя 3/8
21.Какая дробь называется неправильной? у которой числитель больше знаменателя 11/5
22.Два закона сложения. Переместительный закон сложения: от перемены мест слагаемых сумма не меняется. Сочетательный закон сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего чисел.
Классическая вероятность события:
где P(A) — вероятность события A;
m — число благоприятных событий;
N — число всех возможных событий.
1) событие A — книга будет на эстонском, m — 6, N — 6+4=10
2) событие A₁ — книга с 1-й полки будет на эстонском, m — 6, N — 6+4=10
событие B₁ — книга со 2-й полки будет на эстонском, m — 5, N — 5+3=8
Произведение совместных событий:
событие A₂ — книга с 1-й полки будет на английском:
событие B₂ — книга со 2-й полки будет на английском:
Произведение совместных событий:
Сумма совместных событий:
1) 0,6 или 60% ;
2) 0,525 или 52,5%