1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения: В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение: И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения: Вынесем общий делитель за скобку: Решим получившееся выражение: Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
Нужно найти производную данной функции и приравнять к нулю: 1 - x^2 = 0. Решением данного уравнения являются корни x = -1 и x = 1. Исследуем на возрастание, убывание исходную функцию: при x = - 2 производная принимает отрицательное значение, значит функция в промежутке до точки x = -1 убывает. при x = 0 производная принимает положительное значение, значит функция в промежутке от -1 до 1 возрастает. при x = 2 производная принимает отрицательное значение, значит функция в промежутке от 1 до бесконечности убывает. Следовательно точкой максимума является точка при x = 1. ответ - x=1
В этом выражении деление на
И решим его:
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения:
Вынесем общий делитель за скобку:
Решим получившееся выражение:
Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на