М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilyamam07
ilyamam07
25.01.2021 07:31 •  Математика

1. написать уравнения касательной к кривой у=х^(3)+2х-2 в точке с абсциссой х0=2.
2.составить уравнения касательной к кривой у=х^(3)+2х-2 в точке с абсциссой х0=1.

👇
Ответ:
nourdana
nourdana
25.01.2021

........................


1. написать уравнения касательной к кривой у=х^(3)+2х-2 в точке с абсциссой х0=2.2.составить уравнен
4,7(83 оценок)
Открыть все ответы
Ответ:
Marcha7777777
Marcha7777777
25.01.2021
Для удобства дадим название каждой стороне прямоугольника (см. рисунок). и распишем, чему равен периметр каждого маленького прямоугольника по часовой стрелке: p1 = 2a + 2c = 24 p2 = 2b + 2c = 28 p3 = 2b + 2d = 16 p4 = 2a + 2d = ? выразим стороны a и d из первого и третьего периметра и подставим их в периметр четвертого прямоугольника: 2a = 24 – 2c 2d = 16 – 2b p4 = 24 – 2c + 16 – 2b мы также можем выразить сторону b через второй периметр, чтобы периметр четвертого прямоугольника был выражен только через одну сторону: 2b = 28 – 2c p4 = 24 – 2c + 16 – (28 – 2c) = 24 – 2c + 16 – 28 + 2c = 24 + 16 – 28 = 12 в результате все неизвестные сократились и был найден периметр четверного прямоугольника, равный 12.
4,6(18 оценок)
Ответ:
chackandrew
chackandrew
25.01.2021
1 задача, ты совершенно не объяснил что делать. 
2 я решу:

Для того что бы найти уравнение касательной к графику функции, нужно:

Найти производную f'(x_{0} )
Из полученной производной, делаем уравнение: y= f(x_{0})+f'(x_{0})(x-x_{0})
И это и есть уравнение касательной, а теперь, перейдем к решению:

Найдем производную функции f(x)=x^3
Это простая степенная функция, а в каждой степенной функции, производную находят так: ax^a^-^1 - где а- степень
В нашей 3 степени: f'(x)= 3x^2 - вот такая вот производная

Дальше делаем так:

y=f(3)+f'(3)(x-3)
 
Вначале найдем значение функции f(x)=x^3 в точке x_{0}:

f(3)= 3^3= 9

И получаем следующее: 
y=9+3*9^2*(x-9)
y=9+3*(3^2)^3-27x^2
y= 738-27x^2
Ну если упростить, получим:
y=3(-3x^2+82) - это и есть касательная в ДАННОЙ точке.

Не со всем правильно я где то решил, но суть та же, а касательная : y=27x-54
4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ