Периметр - это сумма сторон. В равно бедренном 2 стороны равны. Вариант 1. Если основание больше боковых сторон. x - основание x-18 - боковая сторона. x + x - 18 + x - 18 = 51 3x = 87 x = 29 см x - 18 = 9 см. Но тут возникает загвоздка. Если сложить все стороны, то периметр получится не 51, а 47. Поэтому такого равнобедренного треугольника быть не может. Вариант 2. Если боковые стороны больше основания x + x + 18 + x + 18 = 51 3x = 15 x = 5. x + 18 = 23. 23 + 23 + 5 = 51. Такой вариант равнобедренного треугольника может существовать.
А) Обозначим середины ребер aa1 и сс1‚через М и Н соответственно. Прямая MN параллельна прямой АС и проходит через середину диагонали BD1. Значит, сечение паралл-да плос-ю a это ромб BMD1N. Прямоугольные треугольники АВМ и A1D1M равны, поскольку AM=MA1 и BM=D1M. Значит, AB=A1D1=AD, а ABCD квадрат б) Пусть К — середина ребра ВВ1‚ а КН—высота треугольника BKN. Тогда плоскость МКН перпендикулярна пряной BN. Значит, угол MNK — линейный угол искомого двугранного угла.в прямоугольном треуг. BKN: BN=корень(BK*BK+KN*KN) = 5, HK=(BK*KN)/BN=12/5тогда тангенс MNK = MK/KH = 5/3 ответ: угол равен arctg(5/3)
Вариант 1.
Если основание больше боковых сторон.
x - основание
x-18 - боковая сторона.
x + x - 18 + x - 18 = 51
3x = 87
x = 29 см
x - 18 = 9 см.
Но тут возникает загвоздка. Если сложить все стороны, то периметр получится не 51, а 47. Поэтому такого равнобедренного треугольника быть не может.
Вариант 2.
Если боковые стороны больше основания
x + x + 18 + x + 18 = 51
3x = 15
x = 5.
x + 18 = 23.
23 + 23 + 5 = 51. Такой вариант равнобедренного треугольника может существовать.