с 1
Путём прибавления единицы
Путём вычитания единицы
407, 470, 704, 740
9
двузначное
разряды единицы, десятки, сотни, тысячи и т.д
30, 37, 70, 73
тысячи
миллионы
класс тысяч составляет 3 разряда
Класс миллионов 3 разряда
10 единиц образуют следующий десяток
10 десятков следующую сотню и т.д
Пошаговое объяснение:
с одного (1)
Путём прибавления 1,2,3,4 это 1+1=2, 2+1=3, 3+1=4 и т.д
Путём вычитания 4, 3, 2, 1 это 4-1=3, 3-1=2, 2-1=1 и т.д
используя 0,4.9 получим 407, 470, 704, 740
9
(10) двузначное
разряды единицы, десятки, сотни, тысячи и т.д
30, 37, 70, 73
тысячи
миллионы
класс тысяч составляет 3 разряда: единицы тысяч, десятки тысяч, сотни тысяч
Класс миллионов 3 разряда: единицы миллионов, десятки миллионов, сотни миллионов
10 единиц образуют следующий десяток
10 десятков следующую сотню
10 сотен образуют 1 ед тысяч и т.д
Пошаговое объяснение:
Пусть R — радиус шара.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.