На лесопилке из круглых бревен требуется изготовить прямоугольный брус наибольшей площади поперечного сечения (см. рис.). Диаметр окружности бревна равен 7. Найдите стороны поперечного сечения бруса, приняв √2=1,41.
Пусть х манат у Назрин, тогда 3х манат - у Камиля. По условию они вместе имеют 20 манат. Составим и решим уравнение: х+3х=20 4х=20 х=20:4 х=5 (манат) - у Назрин 5·3=15 (манат) - у Камиля ответ: 5 манат; 15 манат.
По условию известно, что у Камиля в 3 раза больше денег, значит Назрин имеет 1 часть всех денег, а Камиль - 3 части всех денег. Известно, что вместе они имеют 20 манат, значит сначала найдем, сколько манат будет в одной части. 1 часть+3 части=4 части 20:4=5 (манат) - в одной части 5·3=15 (манат) - в трёх частях ответ: 5 манат у Назрин, 15 манат у Камиля.
4,935
Пошаговое объяснение:
Диагональ квадратного бруса равна диаметру бревна, то есть 7.
Сторона бруса а = 7/√2 = 7√2/2 = 3,5*1,41 = 4,935