ответ: 24 = 4
36 = 6
18 = 3
30 = 5
Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

4; 6; 3; 5
Пошаговое объяснение:
24:6=4
36:6=6
18:6=3
30:6=5