М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lera200710
Lera200710
12.04.2021 02:39 •  Математика

ответ дайте в полном виде и в тетраде.
Заранее

👇
Открыть все ответы
Ответ:
tat2119
tat2119
12.04.2021
1) у = -х² + 12х + 5
Найдите критические точки функции и определите, какие из них является точками максимума и минимума.
Находим производную и приравниваем её нулю:
y' = -2x + 12 = 0.
       x = 12/2 = 6.
То есть критическая точка только одна.
Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен).
У такой параболы есть только максимум в её вершине Хо.
Хо = -в/2а = -12/2*(-1) = 6.
Можно провести исследование по знаку производной вблизи критической точки.
х =                          5.5        6           6.5
y' = -2x + 12             1          0           -1.
Если производная меняет знак с + на - то это максимум функции, минимума нет.

3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3].
y' = 4x³ -16x = 0.
      4x(x²-4) = 0.
Имеем 3 корня: х = 0, х = 2 и х = -2.
х =                 -2.5   -2  -1.5   -0.5   0   0.5    1.5    2    2.5
y' = 4x³ -16x  -22.5   0  10.5    7.5   0  -7.5   -10.5  0    22.5.
х = -2 и 2  это минимум,   у = -25.
х = 0         это максимум, у = -9
4,4(66 оценок)
Ответ:
azodanic12
azodanic12
12.04.2021
1) у = -х² + 12х + 5
Найдите критические точки функции и определите, какие из них является точками максимума и минимума.
Находим производную и приравниваем её нулю:
y' = -2x + 12 = 0.
       x = 12/2 = 6.
То есть критическая точка только одна.
Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен).
У такой параболы есть только максимум в её вершине Хо.
Хо = -в/2а = -12/2*(-1) = 6.
Можно провести исследование по знаку производной вблизи критической точки.
х =                          5.5        6           6.5
y' = -2x + 12             1          0           -1.
Если производная меняет знак с + на - то это максимум функции, минимума нет.

3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3].
y' = 4x³ -16x = 0.
      4x(x²-4) = 0.
Имеем 3 корня: х = 0, х = 2 и х = -2.
х =                 -2.5   -2  -1.5   -0.5   0   0.5    1.5    2    2.5
y' = 4x³ -16x  -22.5   0  10.5    7.5   0  -7.5   -10.5  0    22.5.
х = -2 и 2  это минимум,   у = -25.
х = 0         это максимум, у = -9
4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ