Достаточное условие наличия экстремума в точке - производная меняет знак при переходе. Найдём значения производной на интервалах (возьмём значения: 1(0<0.25<1) , 1/5(0<1/5<1/4) и -1 (-1<0<1/4)
f'(1) = 1² - 4*(1³) = -3
f'( 1/5) = 0,2² - 4*(0,2³) = 0,04 - 4*(0,008) = 0,008 (Знак поменялся, точка 0,25 - точка минимума)
f'(-1) = (-1)²-4*(-1)³ = 1-4*(-1) = 1 + 4 = 5 знак остался прежним, поэтому точка экстремума Одна
1) 1 вариант. Произведение = 0 , если один из множителей = 0 (4,5х + 3,6 ) * (-16,6 ) = 0 Т.к. -16,6 ≠ 0 , значит 4,5х +3,6 = 0 4,5х = -3,6 х = -3,6 : 4,5 х = -0,8
2 вариант. Разделить обе части уравнения на ( -16,6) (4,5х + 3,6) * (-16,6) = 0 |: (-16,6) ((4,5х +3,6) * (-16,6) ) / (-16,6) = 0/(-16,6) 4,5х +3,6 = 0 4,5х = -3,6 х = -3,6 : 4,5 х = -0,8
3 вариант. Раскрыть скобки, получится : 4,5 х * ( - 16,6) + 3,6 * (-16,6 ) = 0 -74,7х - 59,76=0 -74,7х= 59,76 х= 59,76/ (-74,7) х= -0,8 Варианты №1 и №2 на мой взгляд более приемлемы для решения уравнений данного типа.
f(x)=1/3 x^3-x^4+5
найдём стационарные точки:
х²-4х³ = 0
х²*(4х-1) = 0
Достаточное условие наличия экстремума в точке - производная меняет знак при переходе. Найдём значения производной на интервалах (возьмём значения: 1(0<0.25<1) , 1/5(0<1/5<1/4) и -1 (-1<0<1/4)
f'(1) = 1² - 4*(1³) = -3
f'( 1/5) = 0,2² - 4*(0,2³) = 0,04 - 4*(0,008) = 0,008 (Знак поменялся, точка 0,25 - точка минимума)
f'(-1) = (-1)²-4*(-1)³ = 1-4*(-1) = 1 + 4 = 5 знак остался прежним, поэтому точка экстремума Одна
ответ: х = 0,25 - точка экстремума