Пошаговое объяснение:
1) 7≤ 2х + 3 ≤ 11
При 2x+3≥7: 2x≥7-3; x≥4/2; x₁≥2
При 2x+3≤11: 2x≤11-3; x≤8/2; x₂≤4
Следовательно: 2≤x≤4⇒x∈[2; 4]
2) -2 <8+х/7< 4 - если нет пропусков, значит (8+x) - числитель.
При (8+x)/7>-2: 8+x>-2·7; x>-14-8; x₁>-22
При (8+x)/7<4: 8+x<4·7; x<28-8; x₂<20
Следовательно: -22<x<20⇒x∈(-22; 20)
3) -3 <1+ 2x ≤ 7
При 1+2x>-3: 2x>-3-1; x>-4/2; x₁>-2
При 1+2x≤7: 2x≤7-1; x≤6/2; x₂≤3
Следовательно: -2<x≤3⇒x∈(-2; 3]
4) - 7≤2х+1/2<2 - если нет пропусков, значит (2x+1) - числитель.
При (2x+1)/2≥-7: 2x+1≥-7·2; 2x≥-14-1; x≥-15/2; x≥-7,5
При (2x+1)/2<2: 2x+1<2·2; 2x<4-1; x<3/2; x<1,5
Следовательно: -7,5≤x<1,5⇒x∈[-7,5; 1,5)
5 4 3
-4 6 0
1 8 7
Умножим 1-ую строку на (4). Умножим 2-ую строку на (5). Добавим 2-ую строку к 1-ой:
0 46 12
-4 6 0
1 8 7
Умножим 3-ую строку на (4). Добавим 3-ую строку к 2-ой:
0 46 12
0 38 28
1 8 7
Умножим 1-ую строку на (-19). Умножим 2-ую строку на (23). Добавим 2-ую строку к 1-ой:
0 0 416
0 38 28
1 8 7
Полученная матрица:
0 0 416
0 38 28
1 8 7
Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 3
Матрица В6 5 3
7 8 -2
-5 1 0
Умножим 1-ую строку на (-7). Умножим 2-ую строку на (6). Добавим 2-ую строку к 1-ой:
0 13 -33
7 8 -2
-5 1 0
Умножим 2-ую строку на (5). Умножим 3-ую строку на (7). Добавим 3-ую строку к 2-ой:
0 13 -33
0 47 -10
-5 1 0
Умножим 1-ую строку на (-47). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:
0 0 1421
0 47 -10
-5 1 0
Для удобства вычислений поменяем строки местами:
0 0 1421
0 47 -10
-5 1 0
Полученная матрица:
0 0 1421
0 47 -10
-5 1 0
Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 3