Уравнение (ax - 5 - x)/(x^2 - 4) = 0 равносильно системе: ax - 5 - x = 0, x^2 - 4 ≠ 0. Из первой части системы: x(a-1)=5, x = 5/(a-1). Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет. Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2: 1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5 2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5 ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.
Составим уравнения по нашим данным. Пусть кол-во машин, которое было на второй автостоянке равно А, тогда если "на первой автостоянке машин было т, что на 2 машины меньше, чем на второй", это говорит о том, что на второй автостоянке было на 2 машины больше, чем на первой, т.е.: А=т+2
"... и в 3 раза меньше, чем на третьей". Т.е. на третьей автостоянке в 3 раза больше машин, чем на первой. Пусть кол-во машин на третьей автостоянке равно С. Получаем: С=3*т
Полное кол-во машин с 3х стоянок пусть будет = М, тогда: М=т+А+С=т+(т+2)+3т=т+т+2+3т=5т+2.
ax - 5 - x = 0,
x^2 - 4 ≠ 0.
Из первой части системы: x(a-1)=5, x = 5/(a-1).
Очевидно, что при a = 1 x*(1-1)≠5, то есть уравнение решений не имеет.
Теперь рассмотрим вторую часть системы. x = 2 и x = -2 не могут быть решениями уравнения, потому что при этих значениях x^2 - 4 = 0. Найдем a, при которых в первом уравнении получаются решения x = 2 и x = -2:
1) 2 * (a-1) = 5 => a-1 = 2.5 => a = 3.5
2) -2 * (a-1) = 5 => a-1 = -2.5 => a = -1.5
ответ: уравнение не имеет решений при a = 1, a = -1.5 и a = 3.5.