Дано:
P = 150 см
длина на 9 см больше ширины
Найти:
длина - ? см
ширина - ? см
S - ? см^2
Пусть ширина прямоугольника x см,тогда длина прямоугольника - (x+9)см.
По условию задачи периметр прямоугольника равен 150 см.
Составим и решим уравнение:
(x + (x + 9)) * 2 = 150
(2x + 9) * 2 = 150
4x + 18 = 150
4x = 150 - 18
4x = 132
x = 33
Ширина прямоугольника 33 см
33 + 9 = 42 (см) - длина прямоугольника.
33 * 42 = 1386 ( см^2) - площадь прямоугольника.
ответ:33 см; 42 см ; 1386 см^2.
Пошаговое объяснение:
№3
Дано: ΔАВС, АА₁, ВВ₁ - биссектрисы. АА₁ ∩ ВВ₁ = М.
∠АМВ = 128°.
Найти: ∠МСВ₁.
Из ΔАМВ: ∠МАВ + ∠МВА = 180° - 128° = 52° (сумма углов треугольника 180°)
∠МАВ и ∠МВА половины углов ВАС и АВС. Значит,
∠ВАС + ∠АВС = 52° · 2 = 104°
Тогда, ∠АСВ = 180° - (∠ВАС + ∠АВС) = 180° - 104° = 76°.
М - точка пересечения биссектрис, значит, СМ - биссектриса угла АСВ.
Тогда ∠МСВ₁ = ∠АСВ/2 = 76°/2 = 38°
ответ: 38°
№4.
Дано: ΔMKN, MK = 17, MD = DN, D∈MN, CD⊥MN, C∈MK, CN = 10
Найти: СК.
CD - серединный перпендикуляр к MN. Все точки серединного перпендикуляра к отрезку равноудалены от его концов. Значит, MC = CN = 10.
CK = MK - MC = 17 - 10 = 7
ответ: 7
№7
Дано: ΔMEN, EF и MK - медианы, EF ⊥ MK, EF ∩ MK = О.
EF = 18, MK = 15.
Найти: ON.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
OF = EF/3 = 18/3 = 6, OE = 2OF = 12
OK = MK/3 = 15/3 = 5, ON = 2OK = 10
ΔЕОК: ∠ЕОК = 90°, по теореме Пифагора
ЕК = √(ОК² + OE²) = √(144 + 25) = √169 = 13
cos∠OEK = OE/EK = 12/13
EN = 2EK = 26
ΔOEN по теореме косинусов:
ON² = OE² + EN² - 2OE·EN·cos∠OEN
ON² = 144 + 676 - 2 · 12 · 26 · 12/13 = 820 - 576 = 244
ON = 2√61
ответ: 2√61
№8
Дано: ΔАВС, О - точка пересечения серединных перпендикуляров к AC и ВС.
∠АОВ = 120°, АB = 20
Найти: ОС.
Т.к. О - точка пересечения серединных перпендикуляров, О - центр окружности, описанной около ΔАВС. Тогда ОА = ОВ = ОС как радиусы.
ΔАОВ:
пусть ОА = ОВ = х, тогда по теореме косинусов:
АВ² = OA² + OB² - 2OA·OB·cos120°
400 = x² + x² + 2x²·1/2
400 = 2x² + x²
3x² = 400
x² = 400/3
x = 20/√3 = 20√3/3
ответ: ОС = 20√3
Тогда х+9 - ширина прямоугольника.
Р = 2(а+b) - периметр прямоугольника, где а - ширина; b - длина.
а = х
b = х+9
Уравнение:
150 = 2(х + х+9)
150 = 2х + 2х + 18
4х = 150 - 18
4х = 132
х = 132 : 4
х = 33 см - ширина.
х+9 = 33 + 9 = 42 см - длина.
2) S = ab, где а - ширина, b - длина прямоугольника.
а = 33 см;
b = 42 см.
S = 33 • 42 = 1386 кв.см - площадь прямоугольника.
ответ: 33 см; 42 см; 1386 кв.см.