№ 1. 20 + 8х - 42 - 27х = 8х - 27х + 20 - 42 = -19х - 22, при х = 2
-19 * 2 - 22 = -38 - 22 = -60
№ 2. 15 - 5х = х + 8
-5х - х = 8 - 15
-6х = -7
х = -7 : (-6)
х = 7/6 = 1 целая 1/6
№ 3. х - во второй цистерне, 4х - в первой
х + 20 = 4х - 19
х - 4х = - 19 - 20
-3х = -39
х = -39 : (-3)
х = 13 (т) - в первой цистерне первоначально
13 * 4 = 52 (т) - во второй первоначально
№ 4. 100 стр = 20% х стр = 100% - ?
1) Находим целое по его части: 100 : 20% * 100% = 500 (стр) в книге
2) 500 - 100 = 400 (стр) - оставалось прочитать во второй день
3) 400 : 100 * 80 = 320 (стр) - прочитал во второй день
4) 500 - (100 + 320) = 80 (стр) - остаётся прочитать
а) x^2-2x=8; x^2-2x+1-1-8=0; x^2-2x+1-9=0; (x-1)^2-3^2=0;
(x-1+3)(x-1-3)=0; (x+2)(x-4)=0; x1=-2 x2=4.
b) x^2- 4x= 21; x^2-4x+4-4-21=0; x^2-4x+4-25=0; (x-2)^2-5^2=0;
(x-2+5)(x-2-5)=0 (x+3)(x-7)=0; x1=-3 x2=7;
c) x^2+ 6x= 16; х^2+6x+9-9-16=0; х^2+6x+9-25=0; (x+3)^2-5^2=0;
(x+3+5)(x+3-5)=0; (x+8)(X-2)=0; x1=-8 x2=2.
d) x^2+ 2x- 3= 0; x^2+ 2x+1-1- 3= 0; x^2+ 2x+1-4= 0;
(x+1)^2-2^2= 0; (x+1+2)(x+1-2)=0; (x+3)(x-1)=0; x1=-3 x2=1.
e) x^2+6x- 7= 0; x^2+6x+9-9-7= 0; (x+3)^2-16= 0; (x+3+4)(x+3-4)=0;
(x+7)(x-1)=0; x1=-7 x2=1.
f) x^2+3x- 10= 0; x^2+3x+2,25-2,25-10= 0; (x-1,5)^2-12,25=0;
(x-1,5+3,5)(x-1,5-3,5)=0; (x+2)(x-5)=0; x1=-2 x2=5.
h) x^2- 20x+ 36= 0; x^2- 20x+100-100+ 36= 0; (x-10)^2-64=0;
(x-10)^2-8^2=0; (x-10+8)(x-10-8)=0; (x-2)(x-18)=0; x1=2 x2=18.
i) x^2- 3x= 4; x^2-3x+2,25-2,25-4=0; (x-1,5)^2-6,25=0;
(x-1,5)^2-2,5^2=0; (x-1,5+2,5)(x-1,5-2,5)=0; (x+1)(x-4); x1=-1 x2=4.
j) x^2- x=12; x^2-x+0,25-0,25-12=0; (x-0,5)^2-12,25=0;
(x-0,5)^2-3,5^2=0; (x-0,5+3,5)(x-0,5-3,5)=0; (x+3)(x-4)=0; x1=-3 x2=4.
Надо сказать, что не всякое уравнение можно решить таким Это один из многочисленных методов решения.