М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Artemmundryl
Artemmundryl
23.03.2022 20:29 •  Математика

Вычисли сторону АС, если в ответе нет квадратного корня, под знаком корня пиши 1

👇
Ответ:
ladykati
ladykati
23.03.2022

42/√3

Пошаговое объяснение:

Т.к ∠А = 30°, то сторона BC = 1/2 AC или АС = 2АВ. По теореме Пифагора составим такое уравнение:

4BC^2 = AB^2 + BC^2

AB^2 = 3BC^2

AB = BC√3

BC = 21/ √3

AC = 2BC = 42/√3

4,6(34 оценок)
Открыть все ответы
Ответ:
Sофушка
Sофушка
23.03.2022
Розв'язуємо нерівність методом інтервалів.  

Для початку  спростимо нашу нерівність.
(x-17)(x+5)-(2x-3)(2x+3) \leq -67 \\ x^{2} -17x+5x-85-(4x^2-9) \leq -67 \\ x^{2} -12x-85-4x^2+9+67 \leq 0 \\ -3 x^{2} -12x-9 \leq 0

Знаходимо нулі функції: 
-3 x^{2} -12x-9 =0 \\ -3( x^{2} +4x+3)=0 \\ x^{2} +4x+3=0 \\ \left \{ {{ x_1+x_2=-4} \atop { x_1x_2=3 }} \right. \\ \left \{ {{x_1=-3} \atop {x_2=-1}} \right. \\ \\-3( x^{2} +4x+3)=0 \\ x_1=-3 \\ x_2=-1

Позначаємо нулі на ОДЗ і знаходимо знак функції f(x) у кожному проміжку, на які розбиваємо ОДЗ 
(для того щоб знайти знак ми беремо будь яке число, яке належить даному проміжку, наприклад на проміжку [-3 -1] можна взяти число -2, і підставляємо його в нашу нерівність замість х і вираховуємо, якщо виходить від'ємне число, то ставмо знак мінус, а якщо додатне, то плюс)

____-__-3___+____-1___-___>x

Оскільки за умовою потрібно знайти числа які менші рівні, то  проміжки які мають знак мінус і є відповіддю для нашої нерівності. 

Відповідь: (-∞; -3]∪[-1; +∞)
4,4(56 оценок)
Ответ:
LoveSmile78900987
LoveSmile78900987
23.03.2022
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках. 

"Опасные" точки сразу видны, это:
1) n=- \frac{2}{7} - знаменатель обращается в 0.
2) n=0 - по обычаю проверяется эта точка.

Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
lim (1+ \frac{1}{x})^x=e (при x→∞)

Выделяем целую часть в дроби:

\frac{7n+3}{7n+2 } = 1 + \frac{1}{7n+2 }

Используем свойство 2-го замечательного предела, но добавляем степени:

lim (1 + \frac{1}{7n+2 })^{3n-4}

lim (((1 + \frac{1}{7n+2 })^{7n+2})^{ \frac{1}{7n+2}})^{3n-4} = e^{\frac{1}{7n+2} * 3n-4} (при n→∞)

То есть мы степень не меняли: домножили и разделили.

Посчитаем, что получилось:

e^{\frac{1}{7n+2} * 3n-4} = e^{ \frac{3n-4}{7n+2}} = e^{ \frac{n*(3-\frac{4}{n}) }{n*(7+\frac{2}{n})} } = e^{ \frac{3}{7} } (при n→∞)

Итак: 
1) n→+∞ предел равен e^{ \frac{3}{7} }
2) n→-∞  предел равен e^{ \frac{3}{7} }

3) n→0 предел равен:
lim ( \frac{7n+3}{7n+2})^{3n-4} = (\frac{3}{2})^{-4} = (\frac{2}{3})^{4} = \frac{16}{81}

4) n- \frac{2}{7}
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).

Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.

Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - \frac{3}{7} \leq x \leq - \frac{2}{7} - мы получаем отрицательное основание).

Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).

Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).

Найдите предел числовой последовательности. укажите, является ли заданная числовая последовательност
4,4(95 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ