М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
grusnikot
grusnikot
17.10.2020 13:51 •  Математика

1296. Знайдіть значення виразу:
30,25 -1) 2475 ). -​

👇
Открыть все ответы
Ответ:
Ням1111
Ням1111
17.10.2020
Фигура, образованная графиками функций y=(x-4)^3 и y=2x-8, состоит из двух участков, так как имеется 3 точки пересечения этих графиков.
Находим граничные точки фигуры, для чего приравниваем функции:
(x-4)³ = 2x-8,
(x-4)³ - 2(x-4) = 0,
(х-4)((х-4)²-2) = 0.
Произведение равно нулю, когда один или все множители равны нулю.
х - 4 = 0.
Получаем первую точку х = 4.
((х-4)²-2) = 0,
х²-8х+16-2 = 0,
х²-8х+14 = 0.
Решаем уравнение x²-8x+14=0: 
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-8)^2-4*1*14=64-4*14=64-56=8;Дискриминант больше 0, уравнение имеет 2 корня:
x₂=(√8-(-8))/(2*1)=(√8+8)/2=√8/2+8/2= 4 +√2 ≈ 5,4142136;x₃=(-√8-(-8))/(2*1)=(-√8+8)/2=-√8/2+8/2= 4 -√2 ≈ 2,5857864.

Заданную площадь находим суммой двух интегралов:

S= \int\limits^{4} _{4- \sqrt{2}} {((x-4)^3-2(x-4))} \, dx + \int\limits^{4+ \sqrt{2}} _4 {((2(x-4)-(x-4)^3)} \, dx
Решение этих интегралов даёт ответ: S = 2.
4,6(7 оценок)
Ответ:
Babai7777
Babai7777
17.10.2020
Найти:

длину ребра А1А2;угол между ребрами А1А2 и А1А4;площадь грани А1А2А3;уравнение плоскости А1А2А3.объём пирамиды А1А2А3А4.

2.10. А1 ( 6; 6; 5), А2 ( 4; 9; 5), А3 ( 4; 6; 11), А4 ( 6; 9; 3).
Решение:


 

 

1. Находим длину ребра А1А2

Длина ребра А1А2  равна расстоянию между точками А1 и А2или модулю вектора . Расстояние между точкамиА1(x1;y1;z1)  и            А2 (x2;y2;z2) вычисляется по формуле:

подставим в эту формулу координаты точек и получим:
 единиц
2. Угол между ребрами А1А2 и А1А4 обозначим и вычисляем по формуле:
;
где  = ; = ; 
находим координаты векторов, для этого вычитаем из координат конца координаты начала :


подставляем координаты векторов в формулу и считаем cos?:
;
 (градусов).
3. Площадь грани (треугольника) А1А2А3  находим используя свойства скалярного произведения: площадь параллелограмма, построенного на векторах и численно равна модулю их векторного произведения. Площадь треугольника равна половине площади параллелограмма:

 
Сначала находим координаты векторов:

находим их произведение: 

и вычисляем площадь грани:
 кв.единиц

4. Уравнение плоскости A1A2A3 найдем как уравнение плоскости, проходящей через три данные точки A1; A2иA3:


подставим координаты точек A1; A2иA3 .

вычислив определитель матрицы получаем уравнение:
  сокращая уравнение на 6 получим уравнение плоскости:  
5. Объем пирамиды A1A2A3A4 равен одной шестой смешанного произведения трех векторов модуль которого числено равен объему праллелепипеда, построенного на этих векторах.
Выразим произведение трех векторов через координаты сомножителей:


 
составим из координат векторов и решим матрицу:
 куб.единицы

ответы:

длина ребра А1А2  равна единиц.угол между ребрами А1А2 и А1А4:(градусов).площадь грани А1А2А3  кв.единицуравнение плоскости А1А2А3: объём пирамиды А1А2А3А4 равен 4 куб.единицы.
4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ