пусть для какого-то i верно, что 1+2+4+8+...+2^i=2^(i+1)-1
тогда 1+2+4+8+...+2^i+2^(i+1)=2^(i+1)+2^(i+1)-1=2^(i+2)-1
ч.т.д.
Теперь заметим, что если у нас есть 2^101 монет, то нам потребуется 101 взвешивание т.к. за 1 взвешивание мы отсекаем не больше половины монет.
Теперь заметим, как мы сможем взвесить 2^100+2^99+2^98++2+1
Взвесим первые 2^100 монет, разбив их на 2 кучки.
Если кучки весят одинаково(все монеты настоящие), то берем следующие 2^99, 2^98, и т.д.
Если первые 2+4+8+...2^100 монет настоящие, то последняя монета - фальшивая. пусть на i шаге нашлась кучка из 2^(100-i) монет, среди которых есть ненастоящяя. тогда у нас есть еще (100-i) взвешиваний, и мы сможем определить фальшивую монету.
Обозначим через х1, х2 и х3 массы угля, отпущенные со склада в 1, 2 и 3 дни, соответственно. По условию задачи: в первый день отпустили угля на 12 т меньше, чем во второй день, т. е. , х1=х2-12 далее: в первый день отпустили угля в 1,3 раза меньше, чем во второй день, т. е. , х1=х2/1,3
Приравняем оба условия, найдем значение х2: х2-12=х2/1,3 1,3х2-15,6=х2 0,3х2=15,6 х2=52
находим значение х1: х1=х2-12=52-12=40
далее по условию в третий день отпустили 37,5 % того, что было отпущено за первые два два дня, т. е. х3=(х1+х2)*0,375
Находи х3: х3=(52+40)*0,375=92*0,375=34,5
ответ: в первый день отпустили 40 т угля, во второй - 52 т, в третий - 34,5 т
Лемма ученика 57 школы: 1+2+4+8+...+2^n= 2^(n+1)-1
Докажем по индукции:
База:
1 = 2-1
1+2 = 3 = 4-1
Шаг:
пусть для какого-то i верно, что 1+2+4+8+...+2^i=2^(i+1)-1
тогда 1+2+4+8+...+2^i+2^(i+1)=2^(i+1)+2^(i+1)-1=2^(i+2)-1
ч.т.д.
Теперь заметим, что если у нас есть 2^101 монет, то нам потребуется 101 взвешивание т.к. за 1 взвешивание мы отсекаем не больше половины монет.
Теперь заметим, как мы сможем взвесить 2^100+2^99+2^98++2+1
Взвесим первые 2^100 монет, разбив их на 2 кучки.
Если кучки весят одинаково(все монеты настоящие), то берем следующие 2^99, 2^98, и т.д.
Если первые 2+4+8+...2^100 монет настоящие, то последняя монета - фальшивая. пусть на i шаге нашлась кучка из 2^(100-i) монет, среди которых есть ненастоящяя. тогда у нас есть еще (100-i) взвешиваний, и мы сможем определить фальшивую монету.
По лемме ученика 57 школы 1+2++2^100= 2^101-1
а 2^101 монет быть не может.
ответ:2^101-1