![\int \dfrac{dx}{\sqrt{(x^2+3)^5}}=\Big[\; x=\sqrt3tgt\; ,\; dx=\frac{\sqrt3}{cos^2t}\, dt\; ,\; x^2+3=3\, tg^2t+3=\frac{3}{cos^2t}\; \Big]=\\\\\\=\int \dfrac{\sqrt3\, dt}{cos^2t\cdot \sqrt{\frac{3^5}{cos^{10}t}}}=\int \dfrac{cos^5t\, dt}{cos^2t}=\int cos^3t\, dt=\int cos^2t\cdot cost\, dt=\\\\\\=\int (1-sin^2t)\cdot d(sint)=\int d(sint)-\int sin^2t\cdot d(sint)=sint-\dfrac{sin^3t}{3}+C=](/tpl/images/1103/7746/e6ae2.png)

Пошаговое объяснение:
Пусть при построении в шеренги по двенадцать осталось m лишних солдатиков и получилось n шеренг. Общее число солдатиков 12n+m. Поскольку при построении этих же солдатиков в шеренги по четыре остаётся три лишних, то m может быть равно 3, 7 или 11
Если m =3, то общее число солдатиков 12n+3, и при построении в шеренги по три лишних солдатиков не останется.
Если m = 7, то общее число солдатиков 12n+7, и условие задачи выполняется.
Если m =11, то общее число солдатиков 12n+11, и при построении в шеренги по три остаётся два лишних солдатика.
Значит, m = 7