первая бригада - за 12 дней, вторая бригада - за 24 дня.
Пошаговое объяснение:
Пусть скорость работы первой бригады будет а, скорость второй в.
Значит за 1 день вместе они делают работу (а+в), а за 8 дней они сделают работу 8*(а+в)=1 поле.
Исходя из условия получаем систему уравнений:
8*(а+в)=1
2а + 5в = 1 - 5/8
Из первого уравнения получим: а=1/8 - в.
Подставляем во второе уравнение и получаем:
2*(1/8-в) + 5в = 3/8
2/8 -2в+5в = 3/8
3в=1/8
в=1/24 поля/день (скорость работы второй бригады).
а=1/8 - 1/24
а=1/12 поля/день (скорость первой бригады).
Значит первая бригада обработает 1 поле за 1 ÷ 1/12 = 12 дней,
вторая бригада за 1 ÷ 1/24 = 24 дня.
ответ:
пошаговое объяснение:
x^2+3x+2< =0
(x+1)(x+2)< =0
x € [-2; -1]
нам надо, чтобы этот отрезок попал целиком внутрь промежутка - решения 2 неравенства.
x^2 + 2(2a+1)x + (4a^2-3) < 0
d/4 = (2a+1)^2 - (4a^2-3) = 4a^2+4a+1-4a^2+3 = 4a+4
если это неравенство имеет два корня, то d/4 > 0
a > -1
x1 = -2a-1-√(4a+4) < -2
x2 = -2a-1+√(4a+4) > -1
тогда решение 1 неравенства [-2; -1] целиком находится внутри решения 2 неравенства [x1; x2].
{ -√(4a+4) = -2√(a+1) < = 2a-1
{ √(4a+4) = 2√(a+1) > = 2a
из 1 неравенства
2√(a+1) > = 1-2a
4(a+1) > = 1-4a+4a^2
4a^2-8a-3 < = 0
d/4 = 4^2+4*3=16+12=28=(2√7)^2
a1=(4-2√7)/4=1-√7/2 ~ -0,323
a2=(4+2√7)/4=1+√7/2 ~ 2,323
a € [1-√7/2; 1+√7/2]
из 2 неравенства
а+1 > = a^2
a^2-a-1 < = 0
d=1+4=5
a1 = (1-√5)/2 ~ -0,618
a2 = (1+√5)/2 ~ 1,618
a € [(1-√5)/2; (1+√5)/2]
ответ: a € [1-√7/2; (1+√5)/2]
2:2+2=3