Множества A и B называются равными, если они состоят из одних и тех же элементов, причем порядок элементов в множествах не существенен. Иными словами, если каждый элемент множества
A является также элементом множества B
, и каждый элемент множества B является также элементом множества A, то A=B
Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
Пошаговое объяснение:
Множества A и B называются равными, если они состоят из одних и тех же элементов, причем порядок элементов в множествах не существенен. Иными словами, если каждый элемент множества
A является также элементом множества B
, и каждый элемент множества B является также элементом множества A, то A=B
В нашем случае равные множества :
1) B1 = {15; 21; 4; 7} ; B4 = {4; 21; 7; 15}; B3 = {21; 7, 15, 4,}; значит
В1=В3=В4
2) B6 = {Всё буквы русского алфавита, n, o, y}; B9 = {Всё буквы кыргызского алфавита}.
Кыргызский алфавит содержит все буквы русского алфавита и n, o, y, значит :
В6= В9