Пошаговое объяснение:
Пусть при построении в шеренги по двенадцать осталось m лишних солдатиков и получилось n шеренг. Общее число солдатиков 12n+m. Поскольку при построении этих же солдатиков в шеренги по четыре остаётся три лишних, то m может быть равно 3, 7 или 11
Если m =3, то общее число солдатиков 12n+3, и при построении в шеренги по три лишних солдатиков не останется.
Если m = 7, то общее число солдатиков 12n+7, и условие задачи выполняется.
Если m =11, то общее число солдатиков 12n+11, и при построении в шеренги по три остаётся два лишних солдатика.
Значит, m = 7
Обратное
Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема
Противоположное
Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема.
Обратное противоположному
Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема
Обратное
Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема.
Противоположное
Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема.
Противоположное обратному
Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.