Это ряд, последующий член этого ряда отличается от предыдущего на 1.
а₁=(-45); a₂ =(-44); d=(-44)-(-45)= 1; последний (n-ый) член ряда an = 43.
Найдем число членов этого ряда по формуле: аn = a₁ +d(n-1);
(n-1) = (an-a₁)/d; n=[(an-a₁)/d] +1 =[(43-(-45))/1] +1= 88+1 = 89;
Sn, сумма n членов ряда. Sn= (a₁+an)·n/2 ;
Найдем сумму 89 членов (S₈₉) нашего ряда:
S₈₉ = [(-45) + 43]·89/2 = (-2)·89/2 = - 89
ответ: сумма равна минус 89
Можно решить и без использования формул ряда.
Если посмотреть на этот ряд, то можно заметить, сто начиная с -43 числа имеют противоположное число, отличающееся по знаку, но равное по модулю. Так как их сумма будет равна нулю
(-43+43=0; -42+42+0; , -2+2=0; -1+1=0 ),
то сумму всего ряда определит сумма двух чисел, не имеющих противоположных себе на правой стороне числовой оси.
(-45) + (-44) = -89
ответ: -89
1. т. О(0;0), R=8 ед.
2. т. О(-19;4), R=14 ед.
Условие:
Используя данную формулу окружности, определи координаты центра О окружности и величину радиуса R.
1. x²+y² = 64;
2. (х + 19)² + (у — 4)² = 196;
Пошаговое объяснение:
Для решения задачи рассмотрим формулу окружности:
(x-a)²+(y-b)² = R², где
(х,у) - координаты точки на окружности, (а,b) - координаты центра окружности, R - радиус окружности.
Для того, чтобы найти a, b и R, нужно привести данные в условии уравнения к виду уравнения окружности.
1. x²+y² = 64 ⇒ (х-0)² + (у-0)² = 8²
а=0, b=0, R=8.
ответ: т. О(0;0), R=8 ед.
2. (х + 19)² + (у — 4)² = 196 ⇒ (х + 19)² + (у — 4)²= 14²
a= -19, b=4, R=14
ответ: т. О(-19;4), R=14 ед.