В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его медианы. Тогда треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, стороны AL и BK равны как половины боковых сторон равнобедренного треугольника, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB равны. Но AK и LB - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Эта задача решается четырьмя путями.
Сначала предположим, что все ручки одинаковы, и пеналы одинаковые, тогда
1-й пенал / 2-й пенал
0/5
1/4
2/3
ответ: ТРИ Теперь предположим, что ручки одинаковы, а пеналы разные, тогда
1-й пенал / 2-й пенал
0/5
1/4
2/3
3/2
4/1
5/0
ответ: ШЕСТЬ Теперь, пусть ручки разные, скажем, разных цветов, а пеналы одинаковые
1-й пенал / 2-й пенал
1-й в 1-й пенал - 1 ручку, во 2-й - 4 ручки
1 -я /(2-я, 3-я, 4-я, 5-я)
2 -я /(1-я, 3-я, 4-я, 5-я)
3 -я /(1-я, 2-я, 4-я, 5-я)
4 -я /(1-я, 2-я, 3-я, 5-я)
5 -я /(1-я, 2-я, 3-я, 4-я)
2-й в 1-й пенал 2 ручки, во 2-й ручки
1-я, 2-я / (3-я, 4-я, 5-я)
1-я, 3-я / (2-я, 4-я, 5-я) 2-я, 3-я / (1-я, 4-я, 5-я)
1-я, 4-я / (2-я, 3-я, 5-я) 2-я, 4-я / (1-я, 3-я, 5-я) 3-я, 4-я / (1-я, 2-я, 5-я)
1-я, 5-я / (2-я, 3-я, 4-я) 2-я, 5-я / (1-я, 3-я, 4-я) 3-я, 5-я / (1-я, 2-я, 4-я)
4-я, 5-я / (1-я, 2-я, 3-я)
Кроме того, можно разложить в один пенал 5 ручек, а в другой 0.
ответ: ШЕСТНАДЦАТЬ И, наконец, ручки разные и пеналы разные, тогда
К предыдущим добавляется ещё когда
в 1-й пенал 3 ручки, во 2-й 2 ручки, в 1-й пенал 4 ручки, а во второй 1 ручку.
В 1-й пенал 0 ручек, а во 2-й - 5
ОТВЕТ: ТРИДЦАТЬ ДВА Выбирай любой Можешь сказать учителю, что задача поставлена некорректно, т.е надо было ему определиться разные ли пеналы и разные ли ручки.
а) Пусть x - ширина, тогда 5x - длина. Зная, что ширина меньше длины на 56 см, составим уравнение:
5x - x = 56
4x = 56
x = 14 (ширина)
5 · 14 = 70 (длина)
Найдем P прямоугольника по формуле:
P = (a+b)·2
P= (70+14) · 2= 168 см
Отв: P = 168 см
Аналогично и под Б
б) Пусть x -ширина, тогда 4x - длина. Зная, что ширина меньше длины на 45 см, составим уравнение:
4x - x = 45
3x= 45
x = 15 (ширина)
4 · 15 = 60 (длина)
P = (60+15)·2 = 150 см
ответ: P = 150 см
Пошаговое объяснение:
Вроде так)))