По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Односоставные предложения это те в которых только 1 главный член то есть - В нём есть только сказуемое или подлежащее пример: Почту несут. - главный член 1 - несут. Двусоставные предложения это те предложения в которых 2 главных члена, пример - Я пришёл домой - Подлежащее - Я, сказуемое - пришёл. Простые предложения это те предложения, в которых только одна грамматическая основа пример - Я пошёл в магазин - основа одна - Я пошёл. Сложные предложения состоят из двух и более грам. основ, например - Я пришёл домой, а друг Коля зашёл в магазин - основы две, 1 - Я пришёл, 2 - друг зашёл. Думаю всё понятно?
По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Пошаговое объяснение: