1) 40832 + 400 = 41232 - ОТВЕТ А 2) 184+47=231 - ОТВЕТ В 3) 603-216=387 - ОТВЕТ Б 4) 207*43=8901 - ОТВЕТ Б 5) 20675:75=275 - ОТВЕТ В 6) нет знаков 7) нет знаков 8) 25*60=1500 - ОТВЕТ Г 9) 855:7=122 - ОТВЕТ В (125) 10) 36 : 1/4 = 144 - ОТВЕТ В 11) нет рисунка 12) 14670 - ОТВЕТ Б 13) 63х >601 - ОТВЕТ В 14) 6570 - ОТВЕТ А 15) 40:2 >30:3 - ОТВЕТ Г 16) треугольник - ОТВЕТ А 17) 100-95=5 - ОТВЕТ Б 18) нет 19) 24 км*2=48 км - ОТВЕТ В 20) 21:7=3 - ОТВЕТА 21) 5*9 22) 5, 15, 25 - ОТВЕТ Б 23) 1275:75=170(ост.7) - ОТВЕТ Г 24) 1000:100=10 - ОТВЕТ В 25) Х=114*52 - ОТВЕТ А
Для начала рассмотрим треугольники BKM и CHM. В этих треугольниках MК = MН, и, из условий задачи, ∠HCM = ∠MBK. Также известно, что треугольник MHC прямоугольный, а в треугольнике KMH, как равностороннем, все углы равны между собой и составляют 60°. Тогда, учитывая то, что в рассматриваемых треугольниках BKM и CHM нет тупых углов, можно сделать вывод о том, что они равны между собой. Следовательно, BK = CH и ∠BKM = ∠АКM = ∠CHM = 90°. Далее, в прямоугольных треугольниках BKM и CHM сумма углов при вершине M равна (180° – ∠HMK) = 180° – 60° = 120°, откуда получаем, что ∠DCM = ∠DBM = 30°. Поэтому в треугольнике ABC - ∠ACB = 60°, ∠ABC = 30° и ∠BAC = 90°. И тогда очевидно, что треугольник ACM — равносторонний, и потому CD перпендикулярна AM, а, следовательно, точки M, H и A лежат на одной прямой.
2) 184+47=231 - ОТВЕТ В
3) 603-216=387 - ОТВЕТ Б
4) 207*43=8901 - ОТВЕТ Б
5) 20675:75=275 - ОТВЕТ В
6) нет знаков
7) нет знаков
8) 25*60=1500 - ОТВЕТ Г
9) 855:7=122 - ОТВЕТ В (125)
10) 36 : 1/4 = 144 - ОТВЕТ В
11) нет рисунка
12) 14670 - ОТВЕТ Б
13) 63х >601 - ОТВЕТ В
14) 6570 - ОТВЕТ А
15) 40:2 >30:3 - ОТВЕТ Г
16) треугольник - ОТВЕТ А
17) 100-95=5 - ОТВЕТ Б
18) нет
19) 24 км*2=48 км - ОТВЕТ В
20) 21:7=3 - ОТВЕТА
21) 5*9
22) 5, 15, 25 - ОТВЕТ Б
23) 1275:75=170(ост.7) - ОТВЕТ Г
24) 1000:100=10 - ОТВЕТ В
25) Х=114*52 - ОТВЕТ А