Из условия следует, что треугольник прямоугольный, далее, рассмотрим треугольник ACD. Все углы у него известны, а именно
^CAD = 15 (по условию)
^ACD = 45 (СD - биссектриса прямого угла)
^ADC = 120 (180-15-45)
и одна сторона тоже
АС = sqrt(3).
Следовательно, треугольник полностью определён и не представляет сложностей найти все другие его элементы.
Длину стороны AD проще всего найти из теоремы синусов
AD/sin(^ACD)=AC/sin(^ADC), откуда
AD =AC*sin(^ACD)/sin(^ADC), подставим исходные данные
AD = sqrt(3)*sin(45)/sin(180-60)=(sqrt(3)*sqrt(2)/2)/(sqrt(3)/2)=sqrt(2)
Вот и всё. Вроде так.
Подробнее - на -
Пошаговое объяснение:
1 - Г
2 - Б
3 - В
4 - Г
5 - Г
6 - В
7 - Г
8 - Б
9 - А
10 - В
11 - А
Пошаговое объяснение:
11) ?(47-24)?(11-13)=-47+24-11+13
?(23)?(-2)=-21
-23-(-2)=-21
-21=-21