Решить задачи по теме ФОРМУЛЫ ПОЛНОЙ ВЕРОЯТНОСТИ И БАЙЕСА
1. Руководство компании выяснило, что в среднем 85% сотрудников, отправленных на стажировку по применению новых информационных технологий, успешно завершают курс обучения. В дальнейшем из них 60% активно применяют в работе полученные знания. Среди тех сотрудников, которые не смогли успешно завершить обучение новые информационные технологии успешно применяют лишь 10%. Если случайно выбранный сотрудник компании активно применяет новые информационные технологии, то какова вероятность того, что он успешно стажировку?
2. Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,55; в противном случае - в 0,35. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,30. Чему равна вероятность заключения контракта?
3. Из числа авиалиний некоторого аэропорта 70% - местные, 20% - по СНГ и 10% - в дальнее зарубежье. Среди пассажиров местных авиалиний 60% путешествуют по делам, связанным с бизнесом, на линиях СНГ таких пассажиров 50%, на международных - 90%. Из прибывших в аэропорт пассажиров случайно выбирается один. Чему равна вероятность того, что он бизнесмен?
4. Аудитор осуществляет проверку фирмы. В ходе работы у него накопилось 2 стопы бухгалтерских документов. В первой стопе содержит из 67 документов7 содержат ошибки, а во второй стопе из 45 документов 4 документа с ошибками. Случайно был переложен один документ из первой стопы во вторую. Какова вероятность того, что документ, извлеченный из второй стопы, содержит ошибку?
5. Компьютерная фирма продает мониторы 4 марок. При этом известно, что мониторы Sony составляют 24% от продаж, Panasonic-28%, LG – 16%, Samsung-32%. Вероятность неполадок в первый год работы для мониторов Sony составляет 0,01, Panasonic-0,02, LG – 0,03, Samsung-0,02. Какова вероятность неполадок в первый год работы случайно выбранного монитора?
6. На АЭС установлена система аварийной сигнализации. Когда возникает аварийная ситуация, звуковой сигнал срабатывает с вероятностью 0,999. Звуковой сигнал может сработать случайно и без аварийной ситуации с вероятностью 0,002. Реальная вероятность аварийной ситуации равна 0,004. Предположим, что звуковой сигнал сработал. Чему равна вероятность того, что это случилось в условиях реальной аварийной ситуации?
7. Керамическая плитка одной марки, цвета и размера выпускается двумя цехами завода: первый цех выпускает 60% плитки, а второй 40%. Причем известно, что 8% продукции первого цеха имеют дефекты, тогда как этот же показатель для второго цеха равен 5%. Случайно взятая плитка имеет дефект. Чему равна вероятность того, что она выпущена первым цехом?
8. Работа сотрудников торгового зала супермаркета организована в две смены. В первой смене работают 5 мужчин и 7 женщин, во второй смене – 9 мужчин и 10 женщин. Из второй смены в первую был переведен один сотрудник. Клиент супермаркета пригласил сотрудника торгового зала для консультации. Консультировал клиента сотрудник – мужчина. Какова вероятность того, что из второй смены в первую была переведена женщина?
a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c-3)-(c-1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+4)-(y-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a+4)-(a+1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+2)-(b-1)^=b^2-2b-8-b^2+2b-1=-9