М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
danik174
danik174
22.07.2021 11:50 •  Математика

Постройте в одной системе координат график функции и укажите координаты точки их пересечения у=2х+1 и у=х+4​

👇
Открыть все ответы
Ответ:
dvofgisf
dvofgisf
22.07.2021

f(\frac12,\frac12)

Пошаговое объяснение:

\displaystyle \left(\frac{(2n+1)!}{(n!)^2}\right)^2\iint_Qdx_1\,dx_2\,(x_1(1-x_1))^n(x_2(1-x_2))^n=\\=\left(\frac{(2n+1)!}{(n!)^2}\int_0^1 dx\, (x(1-x))^n\right)^2=:\left(\int_0^1 u_n(x)\,dx\right)^2

Выражение в скобках равно 1, достаточно n раз проинтегрировать по частям:

\displaystyle \int_0^1 dx\, x^n(1-x)^n=-\frac1{n+1}\left.x^n(1-x)^{n+1}\right|_0^1+\frac n{n+1}\int_0^1dx\, x^{n-1}(1-x)^{n+1}=\\=\frac{n(n-1)}{(n+1)(n+2)}\int_0^1dx\,x^{n-2}(1-x)^{n+2}=\dots=\\=\frac{n!}{(n+1)(n+2)\cdots2n}\int_0^1 dx\,(1-x)^{2n}=\frac{(n!)^2}{(2n+1)!}

Тогда

\displaystyle\iint_Qdx_1\,dx_2\,u_n(x_1)u_n(x_2) f(x_1,x_2)=f\left(\frac12,\frac12\right)+\iint_Qdx_1\,dx_2\,u_n(x_1)u_n(x_2)\times\\\times\left(f(x_1,x_2)-f\left(\frac12,\frac12\right)\right)

Значение интеграла стремится к нулю: функции u_n(x) быстро уменьшаются при отдалении от x=1/2, а вблизи точки A=(1/2,1/2) разность значений функций мала ввиду непрерывности f.

Более формально:  

1. Функция f непрерывна, поэтому для любого \varepsilon0 найдётся такая \delta0, что для всех (x_1,x_2) из U=[1/2-\delta,1/2+\delta]^2 выполнено неравенство |f(x_1,x_2)-f(A)|

2. Функция f непрерывна на компакте Q, тогда она ограничена на Q. Тогда найдётся число M > 0, для которого |f(x_1,x_2)-f(A)| при всех (x_1,x_2)\in Q.

3. Очевидно, максимум функции u_n(x) на множестве [0,1]\backslash[1/2-\delta,1/2+\delta] достигается в точках 1/2\pm\delta. Покажем, что при возрастании n он становится сколь угодно малым (в частности, найдётся такое N, что при всех n > N максимум будет меньше \sqrt{\varepsilon/2M}).

Формула Стирлинга позволяет получить асимптотику для коэффициента с факториалами:

(2n+1)\dfrac{(2n)!}{(n!)^2}\sim\dfrac{(2n+1)4^n}{\sqrt{\pi n}}

Тогда максимум при больших n будет «примерно»

\dfrac{(2n+1)4^n}{\sqrt{\pi n}}\cdot\left(\dfrac14-\delta^2\right)^n\sim2\sqrt{\dfrac{n}{\pi}}(1-4\delta^2)^n\to 0

Собираем вместе: для любого \varepsilon0 найдётся такое N, что при всех n > N

\displaystyle\left|\iint_Qdx_1\,dx_2\,u_n(x_1)u_n(x_2)\times\left(f(x_1,x_2)-f\left(M\right)\right)\right|=\left|\displaystyle\iint_U+\iint_{Q\backslash U}\dots\right|

4,5(94 оценок)
Ответ:
Alymov671
Alymov671
22.07.2021

190 прямых

Пошаговое объяснение:

попробуем построить, ну, например для 4-х точек (см.рис).

Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:

C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;

и действительно видим 6 прямых. Тогда для 20 точек:

C₂₀²=20!/((20-2)!2!)=19*20/2=190.


На плоскости отметили 20 точек. Известно, что никакие три из них не лежат на одной пря- мой. Через к
4,5(58 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ