Обозначим изначальную цену, 92 р., за 100% и найдем, на сколько процентов повысилась цена товара после увеличения цены, составив пропорцию:
92 руб. - 100%
110,4 руб. - x%, откуда по свойству пропорции получаем:
x = (110,4 × 100%) / 92 = 11040 / 92 = 120%
Получается, цена повысилась на:
120%-100%=20%
ответ: 20%
Найдем разницу между новой и старой ценой:
110,4 - 92 = 18,4 руб.
Чтобы найти, на сколько процентов поднялась цена, нужно разделить разницу цен на первоначальную цену и умножить на 100%:
(18,4 / 92) × 100% = 0,2 × 100% = 20%
ответ: 20%
y’ всегда положительна.
Пошаговое объяснение:
Найдём производную функции:
y’=15x^4+27x^8
Приравняем производную функции к нулю и найдём критические точки:
15x^4+27x^8=0;
3x^4(5+9x^4)=0;
x1=0
9x^4=-5
Т.к. значение в четвертой степени всегда положительно, а число"-5" отрицательно, то у х2 нет решения.
В итоге решение одно-"х=0". Исследуем эту точку на максимум/минимум.
У нас есть 2 интервала: (-∞;0)∪(0;+∞). Возьмём любую точку из обоих интервалов и подставим в производную, например, -1 и 1:
15*1^4+27*1^8=42;
15*(-1)^4+27*(-1)^8=42;
Как видно, оба значения получились положительными. Это значит, что в точке х=0 нет ни минимума, ни максимума и функция монотонно возрастает.