Пошаговое объяснение:
577. 1) 3(a+1)-n(a+1)=(a+1)(3-n)
Видно, что дважды есть "3" и "n", в визуально похожих ситуациях, поэтому пробуем вынести их
3а+3 мы делим на 3 и получаем а+1. Умножив всю скобку 3(а+1) обратно мы получим то же выражение
С n делаем тоже, но получается +n(-a-1)
Теперь в той же ситуации, вместо "n" - "-"
выносим и его и получаем -n(a+1)
Теперь вместо "n" у нас вся скобка (а+1), поэтому мы выносим ее, "деля" все выражение
2) 6mx-2m+9x-3=2m(3x-1)+3(3x-1)=(3х-1)(2m+3)
Здесь действует тот же принцип, нужно просто понять, как разбить пары так, чтобы в них был общий множитель(2m и 3) и чтобы он был максимально возможным (2m, а не m)
579. 1) 7c²-c-c³-7=c²(7-c)-c+7=c²(7-c)+7-c=(c²+1)(7-c)
Сразу после вынесения с² можно заметить, что оставшиеся члены равны тем, которые в скобках. Это значит, что от них нужно "отделить" единицу
2) х³+28-14x²-2x= x³-14x²+28-2x=x²(x-14)-2(x-14)=(x²-2)(x-14)
Здесь принцип схож с 577.1) и 579.1)
Выбираем удобные пары(например с ³) и меняем знаки с вынесения -2, а не 2
ответ:ето
Пошаговое объяснение:
Примеры
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36